ALGEBRAIC GROUPS: WEEK 8 HOMEWORK

The first two problems below are eligible for submission. The last two are optional exercises.

Let *G* be a linear algebraic group over an algebraically closed field *k*.

(1) Let θ be a vector field on G. Show that θ is left-invariant if and only if the diagram on the left commutes, and that θ is right-invariant if and only if the diagram on the right commutes. (Hint: $\ell_g^* = (\operatorname{ev}_g \otimes 1) \circ \Delta$).)

$$k[G] \xrightarrow{\theta} k[G] \qquad k[G] \xrightarrow{\theta} k[G]$$

$$\Delta \downarrow \qquad \qquad \downarrow \Delta \qquad \Delta \downarrow \qquad \downarrow \Delta$$

$$k[G] \otimes k[G] \xrightarrow{1 \otimes \theta} k[G] \otimes k[G] \qquad k[G] \otimes k[G] \xrightarrow{\theta \otimes 1} k[G] \otimes k[G]$$

(2) Recall that $\text{Lie}(G)_{\ell}$ denotes the Lie algebra of left-invariant vector fields on G, and $\mathfrak{g} = T_1G$ denotes the tangent space at the identity of G, with Lie algebra structure coming from $k[G]^*$. We have a map:

$$Lie(G)_{\ell} \longrightarrow \mathfrak{g}$$
$$\theta \mapsto \eta \circ \theta,$$

where η is the counit. Prove that this map is an isomorphism of Lie algebras. (Hint: you may find Exercise 1 and the counit axiom useful.)

- (3) Suppose *G* is connected. Show that the Lie algebra of *G* (in any manifestation) is commutative if and only if *G* is commutative.
- (4) Let $G = G_a$. Describe the Lie algebra of all vector fields on G. Describe the Lie algebra of left-invariant vector fields on G. Describe the Lie algebra of right-invariant vector fields on G.