ALGEBRAIC GROUPS

Introductory Lecture

29 October 2020

Iordan Ganev, Weizmann Institute of Science

WHAT IS A GROUP?

Reminders:

· A group is a set G with an associative operation

$$\mu: G \times G \rightarrow G$$

such that there exists $e \in G$ and a bijection $i: G \to G$ satisfying the following, for all $g \in G$:

$$\mu(e,g) = g = \mu(g,e)$$
 $\mu(i(g),g) = e = \mu(g,i(g)).$

Examples: symmetric groups, dihedral groups, finite cyclic groups.

· A **Lie group** is a smooth manifold G equipped with the structure of a group, such that the maps μ and i are smooth maps. Example: the general linear group $GL_n(\mathbb{R})$ over the real numbers.

1

WHAT IS AN ALGEBRAIC GROUP?

Definition

An algebraic group is an algebraic variety equipped with the structure of a group, such that the maps μ and i are morphisms of algebraic varieties.

Main objectives of this class:

- · Cover enough algebraic geometry to make sense of this definition.
- · Familiarize ourselves with the most important examples of algebraic groups.
- · Understand the structure of algebraic groups, especially reductive ones.
- · Delve into the representation theory of algebraic groups.

2

MOTIVATION FOR ALGEBRAIC GROUPS

J. S. Milne: "Without too much exaggeration, one can say that all the theory of algebraic group does is show that the theory of Killing and Cartan for 'local' objects over $\mathbb C$ extends in a natural way to 'global' objects over arbitrary fields."

In more detail:

- · Groups of interest can be defined and understood using the powerful language of algebraic geometry.
- · The theory of algebraic groups provides a uniform approach to studying a wide variety of groups over arbitrary fields beyond $\mathbb R$ and $\mathbb C$.
- · Connections to number theory, mathematical physics, etc.

RUNNING EXAMPLE

Let k be an algebraically closed field. Define

$$GL_2 = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in Mat_{2 \times 2} \mid ad - bc \neq 0 \}.$$

We have some important subgroups of GL₂:

· Diagonal matrices, which form a maximal torus of GL₂:

$$T = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \mid a, d \in k^{\times} \right\}$$

· Upper triangular matrices, which form a **Borel subgroup** of GL₂:

$$B = \{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mid a, d \in k^{\times}, b \in k \}$$

• The special linear group SL_2 defined via the equation ad - bc = 1.

REPRESENTATIONS

Defining representation: By definition, there is a linear action of GL₂ on the two-dimensional space k².

Other representations: A representation of GL_2 is a linear action of GL_2 on a vector space V over k. We can take direct sums, tensor products, symmetric and exterior powers of known representations to get new representations.

Irreducible representations: We have GL_2 can be understood combinatorially via irreducible representations of the center $Z(GL_2) \simeq k^{\times}$ (which are all one-dimensional) and irreducible representations of SL_2 (which are indexed by $n=1,2,3,\ldots$).

Meta-principle: One understands algebraic groups through their representations. In fact, one can recover a group through information about its representations.

FLAG VARIETY

Claim: The quotient GL_2/B is isomorphic to one-dimensional projective space \mathbb{P}^1 over k.

Idea: The group GL_2 acts on \mathbb{P}^1 via :

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot [x : y] = [ax + by : cx + dy]$$

where $[x:y] \in \mathbb{P}^1 = (k^2 \setminus \{0\})/k^{\times}$. The action¹ is transitive, and the stabilizer of [1:0] is B.

Aside: This action coincides with Möbius transformations on the Riemann sphere, and the stabilizer of ∞ is B.

In general: The quotient of a (linear) algebraic group by a Borel subgroup will be a projective variety, known as the flag variety.

¹Note that this action is **not** a linear action as discussed in the previous slide.

STRUCTURE OF ALGEBRAIC GROUPS

The algebraic groups with the richest structure are the reductive linear algebraic groups.

Following Grothendieck's vision (c.f. Milne):

- The body of the butterfly is a maxmial torus T (e.g. diagonal matrices).
- The wings are opposite Borel subgroups (e.g. upper- and lower-triangular matrices).
- \cdot The pins are the root system, which rigidifies this situation.

REST OF TODAY

Algebraic geometry concepts:

- · What is the Zariski topology?
- · What is an affine algebra and an affine variety?
- · What is a variety?
- · What is a morphism of varieties?
- · What is projective space and a projective variety?