ALGEBRAIC GROUPS: FINAL EXAM

Let *k* be an algebraically closed field of characteristic 0.

(1) **[15 points]** Recall the usual basis *E*, *F*, and *H* for the Lie algebra \mathfrak{sl}_2 of SL₂. Consider the following endomorphisms of \mathfrak{sl}_2 :

Ad(*g*), ad(E) = [E, -], ad(F) = [F, -], ad(H) = [H, -], where $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2$. Express each of these endomorphisms as a matrix in the basis {*E*, *F*, *H*}.

- (2) **[15 points]** Fix a positive integer *n*.
 - (a) Show that the ideal generated by $T^n 1$ in the polynomial algebra k[T] is radical¹.
 - (b) Consider the affine variety defined as the Zariski closed set $V(T^n 1)$ in k. Show that this variety has the natural structure of a linear algebraic group, and identify this group as a subgroup of the multiplicative group \mathbb{G}_m .
 - (c) State the affine algebra of this linear algebraic group, and write out the comultiplication, counit, and anitpode maps.
- (3) **[15 points]** Adopt the notation of Exercise 2.1.5 in Springer. Consider the algebra homomorphism $k[x] \rightarrow B = k[\text{PSL}_2]$ defined by

$$x \mapsto t_1^2 + 2t_1t_4 + t_4^2,$$

and the induced map of varieties $f : PSL_2 \to \mathbb{A}^1$. Describe the subset of semisimple and the subset of unipotent elements of PSL₂ in terms of the fibers of f.

(4) **[15 points]** Let *G* be a linear algebraic group with Lie algebra $\mathfrak{g} = T_1(G)$. Let *X* be an affine *G*-variety with action map $a : G \times X \to X$ and induced algebra homomorphism $a^* : k[X] \to k[G] \otimes k[X]$. As in 2.3.5 of Springer, we have a (generally infinite-dimensional) representation $\rho_X : G \to GL(k[X])$.

¹Hint: consider the roots of this polynomial.

(a) Prove that the following map is a Lie algebra homomorphism:

$$\mathfrak{g} \longrightarrow \mathcal{T}_X = \operatorname{Der}(k[X], k[X])$$

 $\xi \mapsto -(\xi \otimes 1) \circ a^*$

This homomorphism is known as the *infinitesimal action* of *G* on *X*.

(b) The inclusion

$$\mathcal{T}_X \hookrightarrow \operatorname{End}(k[X]) = \mathfrak{gl}(k[X])$$

gives k[X] the structure of a representation of the Lie algebra \mathcal{T}_X . Precomposing with the infinitesimal action map, we obtain a representation of \mathfrak{g} on k[X]. Relate this representation of \mathfrak{g} to the one obtained from the differential of ρ_X .

- (5) **[20 points]** Let k[x, y] be the affine algebra of \mathbb{A}^2 , and let ∂_x and ∂_y denote the partial derivatives as derivations of k[x, y].
 - (a) Consider the usual action of $G = SL_2$ on \mathbb{A}^2 . Compute the infinitesimal action (see Exercise 4)

$$\mu:\mathfrak{sl}_2\longrightarrow \mathcal{T}_{\mathbb{A}^2}$$

by specifying the images of the standard basis elements *E*, *F*, and *H* in terms of ∂_x and ∂_y . (Observe that it is indeed a homomorphism of Lie algebras.)

- (b) For $n \ge 0$, let V_n be the subspace of k[x, y] consisting of homogeneous polynomials of degree n. Prove that each V_n is a representation of \mathfrak{sl}_2 via μ , and that it is irreducible.
- (c) Identify V_1 with the 'defining' representation of \mathfrak{sl}_2 on k^2 , and V_2 with the adjoint representation of \mathfrak{sl}_2 on itself.
- (d) **Optional**. For each $n \ge 0$, define an action of SL₂ on V_n which differentiates to the action of \mathfrak{sl}_2 on V_n .
- (e) **Optional**. Observe that k[x, y] embeds into End(k[x, y]) as the left multiplication operators. Let $\mathcal{D}_{\mathbb{A}^2}$ be the subalgebra of End(k[x, y]) generated by $\mathcal{T}_{\mathbb{A}^2}$ and the image of k[x, y]. This is known as the *algebra of differential operators* on \mathbb{A}^2 . Argue that μ induces a homomorphism of algebras

$$U\mathfrak{sl}_2 \longrightarrow \mathcal{D}_{\mathbb{A}^2}.$$

Use this homomorphism to compute the action of the Casimir operator $\Delta = EF + FE + \frac{1}{2}H^2$ on $x^n \in V_n$. This gives the *central character* of V_n .

- (6) [**20 points**] Let $G = SL_2$ and *B* the Borel subgroup of upper-triangular matrices. Fix an integer *n*.
 - (a) Define a map $\chi_n : B \to \mathbb{G}_m$ by:

$$\chi_n:\begin{bmatrix}t&u\\0&t^{-1}\end{bmatrix}\mapsto t^n.$$

Verify that χ_n is a character, and show that any character of *B* is of this form.

(b) Define \mathcal{L}_n as the quotient of $G \times k$ by the equivalence relation

$$(gb,\eta) \sim (g,\chi_n(b)\eta)$$

for all $g \in G$, $b \in B$, and $\eta \in k$. Consider the map

$$p: \mathcal{L}_n \longrightarrow G/B$$
$$[g, z] \mapsto gB$$

Observe that \mathcal{L}_n has a natural action of G by left multiplication making p a G-equivariant map. Show that each fiber of p is a one-dimensional vector space, and the action of $x \in G$ defines a linear isomorphism $p^{-1}(gB) \rightarrow p^{-1}(xgB)$. Hence \mathcal{L}_n is G-equivariant line bundle on G/B.

- (c) A section of \mathcal{L}_n is map of varieties $s : G/B \to \mathcal{L}_n$ such that $p \circ s$ is the identity on G/B. The space of sections is denoted $\Gamma(G/B, \mathcal{L}_n)$. Verify that $\Gamma(G/B, \mathcal{L}_n)$ is a vector space, and define a linear action of G on $\Gamma(G/B, \mathcal{L}_n)$.
- (d) **Optional**. For $n \leq 0$, define an isomorphism of SL₂-representations between the $\Gamma(\mathbb{P}^1, \mathcal{L}_n)$ and space V_{-n} from Exercise 5.