
UNIPOTENT AND COMMUTATIVE GROUPS

1. Unipotent groups

Definition 1.1. For n ≥ 1, let Un denote the subgroup of GLn consisting of upper-

triangular unipotent matrices.

Proposition 1.2. Let G be a unipotent linear algebraic group. The only finite-dimensional irre-

ducible representation of G is the trivial one.

Idea of proof. Let ρ : G → GL(V) be a finite-dimensional representation of G. As in the

proof of 2.4.12, one uses Burnside’s theorem on matrix algebras and the non-degeneracy

of the trace pairing to argue that the image ρ(G) in GL(V) is trivial. Since V is an

irreducible representation of G, it follows that V is the trivial one-dimensional represen-

tation. �

Remark 1.3. A unipotent group may have non-trivial finite-dimensional indecomposable

representations. For example, for n ≥ 2, the natural action of Un on kn is indecompos-

able.

Proposition 1.4. Let G be a subgroup of GLn consisting of unipotent matrices. There exists

x ∈ GLn such that xGx−1 is contained in Un.

Idea of proof. Proceed by induction on n. The case n = 1 is immediate since the only

unipotent element of GL1 = Gm is 1. Suppose n > 1. Consider the action of G on

V = kn. By Proposition 1.2, this action must be reducible, i.e. there is a proper non-zero

G-stable subspace W of V. Apply induction to the action of G on W and V/W (details

omitted). �
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2. Commutative groups

Proposition 2.1. Let G be a connected linear algebraic group of dimension 1. Then G is com-

mutative.

We need a bit of set-up before proving this proposition.

Definition 2.2. Let G be an algebraic group. For g ∈ G, we denote the conjugacy class

of g by Cg := {xgx−1 : x ∈ G}.

Lemma 2.3. Let G be a connected linear algebraic group of dimension 0 or 1. If the closure Cg is

equal to G for some g ∈ G, then G is the trivial group.

Idea of proof. Suppose Cg = G for some g ∈ G. One proceeds in a similar fashion to the

proof of 3.1.3. The steps are as follows:

(1) The facts that Cg = G and dim(G) ≤ 1 together imply that the complement G \Cg

is finite (and possibly empty).

(2) Embed G into GLn. Since the characteristic polynomial is conjugation invariant,

step 1 implies the restriction of the characteristic polynomial map on GLn to G

has finite image. Moreover, since G is connected and the characteristic polynomial

map is continuous, every element of G has the same characteristic polynomial as

1 ∈ G.

(3) It follows that every element of G is unipotent, and we can assume (Proposition

1.4) that the image of G lies in Un. Since the derived series of Un is eventually

zero, the same is true for G. In particular, the commutator [G, G] must be a proper

subgroup of G. Since dim(G) ≤ 1 and [G, G] is connected, the only possibility is

that [G, G] is trivial.

(4) Finally, observe that

{g} ⊆ Cg = g−1gCg ⊆ g[G, G] = g{e} = {g}.
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Hence Cg = g is a single point. Since we also have Cg = G, we conclude that G is

the trivial group.

�

Proof of Proposition 2.1. Let G be a connected linear algebraic group of dimension 1 and

let g ∈ G. We argue that Cg = {g}. Since G is not trivial, Lemma 2.3 implies that the

closure Cg is proper in G. Moreover, Cg is an irreducible closed subset of G, and G is

connected of dimension one, so we must have that Cg is of dimension zero. Since it is

also connected, it follows that Cg = {g} for all g ∈ G. Hence Cg = {g}, as desired. �

Theorem 2.4. Let G be a linear algebraic group of dimension 1. Then G is isomorphic either to

Gm or Ga.

If G is a linear algebraic group of dimension 1, we can deduce from earlier results that

either G = Gs or G = Gu. We will prove later that G is isomorphic to Gm in the former

case. In the latter, case G is isomorphic to Ga in the latter case, but we will not give the

full proof in this class (see Sections 3.3 and 3.4).
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