UNIPOTENT AND COMMUTATIVE GROUPS

1. UNIPOTENT GROUPS

Definition 1.1. For $n \ge 1$, let U_n denote the subgroup of GL_n consisting of uppertriangular unipotent matrices.

Proposition 1.2. *Let G be a unipotent linear algebraic group. The only finite-dimensional irreducible representation of G is the trivial one.*

Idea of proof. Let $\rho : G \to GL(V)$ be a finite-dimensional representation of *G*. As in the proof of 2.4.12, one uses Burnside's theorem on matrix algebras and the non-degeneracy of the trace pairing to argue that the image $\rho(G)$ in GL(V) is trivial. Since *V* is an irreducible representation of *G*, it follows that *V* is the trivial one-dimensional representation.

Remark 1.3. A unipotent group may have non-trivial finite-dimensional indecomposable representations. For example, for $n \ge 2$, the natural action of U_n on k^n is indecomposable.

Proposition 1.4. Let G be a subgroup of GL_n consisting of unipotent matrices. There exists $x \in GL_n$ such that xGx^{-1} is contained in U_n .

Idea of proof. Proceed by induction on *n*. The case n = 1 is immediate since the only unipotent element of $GL_1 = G_m$ is 1. Suppose n > 1. Consider the action of *G* on $V = k^n$. By Proposition 1.2, this action must be reducible, i.e. there is a proper non-zero *G*-stable subspace *W* of *V*. Apply induction to the action of *G* on *W* and *V*/*W* (details omitted).

2. Commutative groups

Proposition 2.1. Let G be a connected linear algebraic group of dimension 1. Then G is commutative.

We need a bit of set-up before proving this proposition.

Definition 2.2. Let *G* be an algebraic group. For $g \in G$, we denote the conjugacy class of *g* by $C_g := \{xgx^{-1} : x \in G\}$.

Lemma 2.3. Let G be a connected linear algebraic group of dimension 0 or 1. If the closure $\overline{C_g}$ is equal to G for some $g \in G$, then G is the trivial group.

Idea of proof. Suppose $\overline{C_g} = G$ for some $g \in G$. One proceeds in a similar fashion to the proof of 3.1.3. The steps are as follows:

- (1) The facts that $\overline{C_g} = G$ and dim $(G) \le 1$ together imply that the complement $G \setminus C_g$ is finite (and possibly empty).
- (2) Embed *G* into GL_n. Since the characteristic polynomial is conjugation invariant, step 1 implies the restriction of the characteristic polynomial map on GL_n to *G* has finite image. Moreover, since *G* is connected and the characteristic polynomial map is continuous, every element of *G* has the same characteristic polynomial as 1 ∈ *G*.
- (3) It follows that every element of *G* is unipotent, and we can assume (Proposition 1.4) that the image of *G* lies in U_n . Since the derived series of U_n is eventually zero, the same is true for *G*. In particular, the commutator [G, G] must be a proper subgroup of *G*. Since dim $(G) \le 1$ and [G, G] is connected, the only possibility is that [G, G] is trivial.
- (4) Finally, observe that

$$\{g\} \subseteq C_g = g^{-1}gC_g \subseteq g[G,G] = g\{e\} = \{g\}.$$

Hence $C_g = g$ is a single point. Since we also have $\overline{C_g} = G$, we conclude that *G* is the trivial group.

Proof of Proposition 2.1. Let *G* be a connected linear algebraic group of dimension 1 and let $g \in G$. We argue that $C_g = \{g\}$. Since *G* is not trivial, Lemma 2.3 implies that the closure $\overline{C_g}$ is proper in *G*. Moreover, $\overline{C_g}$ is an irreducible closed subset of *G*, and *G* is connected of dimension one, so we must have that $\overline{C_g}$ is of dimension zero. Since it is also connected, it follows that $\overline{C_g} = \{g\}$ for all $g \in G$. Hence $C_g = \{g\}$, as desired. \Box

Theorem 2.4. Let G be a linear algebraic group of dimension 1. Then G is isomorphic either to G_m or G_a .

If *G* is a linear algebraic group of dimension 1, we can deduce from earlier results that either $G = G_s$ or $G = G_u$. We will prove later that *G* is isomorphic to G_m in the former case. In the latter, case *G* is isomorphic to G_a in the latter case, but we will not give the full proof in this class (see Sections 3.3 and 3.4).