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Abstract

These notes were written in preparation for the author’s candidacy talk at the University
of Texas at Austin. Tannaka duality for affine group schemes asserts that every rigid sym-
metric tensor category with a fiber functor is equivalent to the category of finite-dimensional
representations of an affine group scheme. Moreover, one can recover the group through tensor
automorphisms of the fiber functor. The talk will begin with the definition of an affine group
scheme and representations thereof, discuss how extra structures on a coalgebra correspond to
extra structures on its category of comodules, give outlines of the proofs of main statements of
Tannaka duality, and provide examples. Time permitting, we mention recent results and current
work in the area.

1 Introduction

We begin with a brief review of Pontryagin duality. Let G be a locally compact abelian group and
define the dual group Ĝ of G as the group of unitary characters of G. In other words, Ĝ consists
of the continuous homomorphisms from G to the unit circle S1. The main statement of Pontryagin
duality is that the homomorphism G → ˆ̂

G given by evaluation is an isomorphism [7]. In this way,
one ‘recovers’ the group G from its dual Ĝ by taking the double dual. Moreover, properties of G are
reflected in properties of Ĝ and vice versa. For example, G is compact if and only if Ĝ is discrete.

As we will see, the statements of Pontryagin duality bear some similarity with results concerning
affine group schemes. Specifically, instead of the dual group Ĝ, we consider the category of Rep(G)
of finite dimensional representations of an affine group scheme G over a field k and show that one
can recover G from Rep(G) and the forgetful functor to vector spaces over k. We characterize the
categories that appear as representations of affine groups, and see how properties of G are reflected
in properties of the category Rep(G).

Notation: We fix a commutative ring k; eventually we require k to be a field. Let CAlgk be the
category of commutative algebras over k, and R will always denote an object of CAlgk. Let Set and
Grp denote the categories of sets and groups, respectively. For a field k, let Veck (resp. Veck) denote
the category of vector spaces (resp. finite dimensional vector spaces) over k. For a k-coalgebra A,
let Com(A) (resp. Com(A)) denote the category of right A-comodules (resp. finite dimensional right
A-comodules). We write hX for the representable functor Hom(X,−) defined by an object X of a
category.

2 Affine group schemes

Definition: An affine group scheme is a representable functor G : CAlgk → Set that factors
through Grp. Equivalently, an affine group scheme is a group object in the category Func(CAlgk,Set)
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that is representable. The coordinate ring O(G) of an affine group G is the commutative k-algebra
that represents G.

There is a Hopf algebra structure on O(G), obtained by applying the Yoneda lemma to the
multiplication, unit, and inversion maps on G. Conversely, if A ∈ CAlgk is a Hopf algebra, then
hA = Hom(A,−) is an affine group. An altenative view of affine group schemes is as the group
objects in the category of affine schemes over k, which are precisely the spectra of Hopf algebras.
An advantage to the approach chosen here is that affine group schemes can be compared to any
functor CAlgk → Set, not just ones that define a scheme.

Now we describe the notion of representation of an affine group scheme on a module for the base
ring. Let V be a k-module and define a functor AutV : CAlgk → Grp by AutV (R) = AutR−lin(V ⊗R).
If V is free of rank n, then AutV ' GLn. A representation of an affine group scheme G on V as
a natural transformation r : G→ AutV of group-valued functors.

Theorem 1. There is a canonical equivalence between the category of representations of G and the
category of O(G)-comodules.

This theorem is not surprising since a contravariant functor takes O(G) to G, and it takes a
bit of caution to make this intuition precise. From this result, we see that in order to understand
representations of affine group schemes, it is helpful to think about categories of comodules, which
is what we do in the next section.

3 Categories of comodules

Let A be a k-coalgebra, and let ω : Com(A) → Veck be the forgetful functor from the category of
finite dimensional A-comodules. The goal of this section is to relay two messages. First, we can
recover A as a coalgebra from Com(A) and ω. The key step is:

Proposition 2. There are isomrphisms

Homk−lin(A, V ) ' Nat(ω, ω ⊗ V )

functorial in V ∈ Veck, where ω ⊗ V denotes the composition of functors (−⊗ V ) ◦ ω.

The second message is that there is an exact correspondence between certain extra structures on
the coalgebra A and certain extra structures on the abelian category Com(A), given in the following
chart:

Structure on A Structure on Com(A)

bialgebra tensor
commutative bialgebra symmetric tensor

Hopf algebra rigid tensor
commutative Hopf algebra rigid symmetric tensor

Caveats: The tensor structure on Com(A) must be such that ω is a tensor functor, and if the
tensor structure is symmetric, then it must descend to the usual symmetric structure on Veck via ω.
In justifying the chart, it is usually easier to prove that a structure on A is reflected on the category
of comodules; the other direction is slightly more subtle.
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4 Recovering G from Rep(G).

Let Rep(G) denote the category of finite dimensional representations of an affine group G. We
have observed that Rep(G) is equivalent to the category of finite dimensional comodules for the
commutative Hopf algebra O(G). Therefore, Rep(G) is rigid symmetric tensor category. Let ω :
Rep(G)→ Veck be the forgetful functor. In this section, we explain one part of Tannaka duality for
affine group schemes: one can recover an affine group scheme from its category of finite dimensional
representations and the forgetful functor ω.

Define the group-valued functor Aut⊗(ω) on CAlgk as follows. Let R a k-algebra and consider
the composition:

ω ⊗R : Rep(G)
ω−→ Veck

−⊗R−→ Mod(R).

It is clear that ω ⊗R is a strict tensor functor. (Recall the Mod(R) has a tensor structure since R
is commutative.) Define Aut⊗(ω)(R) as the group of automorphisms of ω ⊗R as a tensor functor.

Theorem 3. There is a canonical isomorphism G ' Aut⊗(ω).

The steps of the proof are as follows. First, Aut⊗(ω) = End⊗(ω) since Rep(G) is rigid. Second,

End(ω)(R) ' NatR−lin(ω ⊗R,ω ⊗R) ' Natk−lin(ω, ω ⊗R) ' Homk−lin(A,R)

where the last isomorphism comes from the propostion in the previous section. Finally, one must
argue that tensor endomorphisms correspond to algebra homomorphisms, i.e. End⊗(ω ⊗ R) '
Homk−alg(A,R), from which it is immediate that End⊗(ω)(R) = G(R).

Corollary 4. Let G and H be affine group schemes over k. There is a bijection between morphisms
of k-schemes G → H and symmetric tensor functors Rep(H) → Rep(G) that commute with the
forgetful functors.

5 Neutral Tannakian categories

In this section, C denotes an essentially small abelian k-linear category. A fiber functor on C is
defined as a faithful exact k-linear functor C → Veck. For example, if A is a k-coalgebra, then the
forgetful functor Com(A) → Veck is a fiber functor. The first goal of this section is to prove that
every fiber functor appears in this way.

Theorem 5. The category C is equivalent to Com(A) for a k-coalgebra A if and only if C admits a
fiber functor ω.

We give an outline of a proof due to Serre [8].

• For an object X of C, let 〈X〉 denote the full subcategory of C whose objects are the quotients
of subobjects of direct sums of copies of X.

• For a fixed (but arbitrary) object X, find a projective generator PX of 〈X〉 such that ω|〈X〉 '
hPX .
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• By standard arguments (e.g. Barr-Beck), we have that

〈X〉 ' Mod(End(PX)) ' Com(AX)

where AX is the finite dimensional k-coalgebra End(P )∨.

• Note End(P ) is finite dimensional since ω is faithful. This fact is crucial here since the dual of
an algebra is not naturaly a coalgebra in infinite dimensions. Also, using the Yoneda lemma,
AX = End(P )∨ ' (End(ω|〈X〉)op)∨.

• If 〈X〉 ⊂ 〈Y 〉, then restriction gives a k-algebra homomorphism

End(ω|〈Y 〉)→ End(ω|〈X〉).

Dualizing gives a k-coalgebra homomorphism AX → AY .

• Let A = lim−→AX and argue that C ' Com(A)

The theorem and results from previous section immediately imply the following corollary, which
characterizes categories that appear as representations of affine group schemes and forms another
part of Tannaka duality for affine group schemes.

Corollary 6. Suppose that C is a symmetric rigid tensor category. Then C is equivlent to the
category of representations of an affine group G if and only if C admits a symmetric tensor fiber
functor ω.

Definition: neutral Tannakian category is a symmetric rigid tensor category C equipped with
a symmetric tensor fiber functor ω : C→ Veck. The corollary implies that every neutral Tannakian
category C is equivalent to Rep(G) for some affine group G, called the Tannakian fundamental
group of C.

6 Examples

1. Let Γ be any group. The category Rep(Γ) of finite dimensional representations of Γ is a
neutral Tannakian category. Its Tannakian fundamental group is called the algebraic hull
of Γ, denoted Γalg.

2. If Γ is finite in the previous example, then the algebraic hull of Γ is the affine group scheme
corresponding to the Hopf algebra Fun(Γ) of k-valued functions on Γ, that is, Γalg = hFun(Γ).
For any commutative k-algebra R with no idempotents other than 0 and 1, Γalg(R) = Γ. To
see this, one exploits that the fact that the delta functions δγ in Fun(Γ) are idempotents whose
sum is the unit element of Fun(Γ).

3. Let Γ be a finite group. Let VecΓ denote the category of Γ-graded vector spaces with tensor
product given as follows: for objects V and W of VecΓ, define the g-homogeneous component
of V ⊗W as (V ⊗W )g =

∑
xy=g Vx⊗kWy. It is easy to see that the forgetful functor ω on VecΓ

is a tensor fiber functor. However, it is not symmetric unless Γ is commutative. Define an
object X =

⊕
g∈ΓXg of VecΓ by setting Xg = k for all g ∈ G. One can verify that VecΓ = 〈X〉
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and that End(ω) is isomorphic to the commutative Hopf algebra Fun(Γ) of functions on Γ.
By the proof of the theorem in the previous section, we can identify

VecΓ ' Mod(Fun(Γ)) ' Com(k[Γ]),

where k[Γ] is the group algebra of Γ, which is dual to Fun(Γ).

4. Let X be a connected semi-locally simply connected topological space and LSX the category
of local systems on X, that is, locally constant sheaves of finite-dimensional complex vector
spaces. The standard tensor product of sheaves gives LSX the structure of a rigid symmetric
tensor category. Fix a point x ∈ X and consider the functor ω : LSX → Veck that sends
the local system F to the stalk Fx at x. This is a fiber functor, and makes LSX a neutral
Tannakian category. The Tannakian fundamental group is the algebraic hull of π1(X,x).

7 Dictionary between properties of G and Rep(G).

In the introduction, we mentioned that properties of a locally compact abelian group G are reflected
in properties of its dual Ĝ. There is a similar sort of ‘dictionary’ between properties of an affine
group scheme G and the category Rep(G). We give some instances of this dictionary; this involves
introducing some terminology.

An affine group scheme G is finite if O(G) is a finite dimensional k-vector space. An affine
group scheme G is algebraic if O(G) is a finitely generated k-algebra. An affine group scheme G
is proreductive if it a projective limit of reductive groups. For an object X of a tensor category
(C,⊗), let 〈X〉⊗ denote the full subcategory of quotients of subobjects of direct sums of X⊗n for
varying n. An abelian category is semisimple if every object decomposes as a direct sum of simples.

Proposition 7. Let G be an affine group scheme.

1. G is finite if and only if Rep(G) = 〈V 〉 for some object V .

2. G is algebraic if and only if Rep(G) = 〈V ⊕ V ∨〉⊗ for some object V .

3. G is proreductive if and only if Rep(G) is a semisimple category.

8 Further directions and applications

Recall that a fiber functor is valued in the category of vector spaces over k, equivalently, the category
of quasi-coherent sheaves on the affine scheme Spec(k). Replacing Spec(k) with an arbitrary k-
scheme, we obtain the following generalization of a neutral Tannakian category: A (general)
Tannakian category is a symmetric rigid tensor category C with EndC(1) ' k equipped with a
faithful exact symmetric tensor functor ω : C → QC(S) from C to the category of quasicoherent
sheaves on a k-scheme S. The hypotheses imply that ω is valued in locally free sheaves of finite
rank. In [3], Deligne demonstrates that every Tannakian category is equivalent to the category of
representations of an affine groupoid scheme acting on S
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We describe recent work by Brandenburg and Chirvasitu [2]. Let X be a quasi-separated scheme
and Y an arbitrary scheme. A morphism Y → X induces a pullback functor f∗ : QC(X)→ QC(Y )
on the categories of quasi-coherent sheaves. This functor is tensor and cocontinuous, i.e. it preserves
direct sums, cokernels, and tensor products. Brandenburg and Chirvasitu [2] have shown that the
construction f 7→ f∗ defines an equivlance between the category of morphisms of schemes Y → X
and the category of cocontinuous tensor functors QC(X)→ QC(Y ); in symbols:

HomSch(Y,X) ' Funcc⊗(QC(X),QC(Y )).

This is analogous to a result given in this talk, namely that there is a bijection between homomor-
phisms between affine group schemes and tensor functors between their categories of representations.
It is not known if the result holds for quasi-compact, quasi-separated algebraic stacks.

Finally, we note an appearance of Tannakian categories in the geometric Langlands program [5].
Let G be a semisimple group and GL its Langlands dual. A well-known result is that the Hecke alge-
bra H(G(Qp), G(Zp)) is isomorphic to the complexified Grothendieck ring C⊗ZK(Rep(GL). How-
ever, passing to the Grothendieck ring looses much information about GL. Instead, consider the cat-
egory P (Gr) of of semisimple G(F̄p[[z]])-equivariant perverse sheaves on Gr = G(F̄p((z)))/G(F̄p[[z]]).

Theorem 8 (Ginzburg). The category P (Gr) is a semismiple neutral Tannakian category with fiber
functor given by taking hyper-cohomology. Moreover, the Tannakian fundamental gorup of P (Gr)
is GL.
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