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1 Sheaf-theoretic set-up

Throughout, Shv(X) denotes the category of sheaves of complex vector spaces on a space X. A
local system on X is a locally constant sheaf of finite-dimensional complex vector spaces. The
category of local systems on X is denoted LS(X).

1.1 The dualizing complex

In the last talk, we considered the Borel-Moore homology of a complex variety X. Our first goal
in this talk is to describe Borel-Moore homology as sheaf cohomology with coefficients in a specific
sheaf, called the dualizing sheaf.

Recall that all spaces X we are interested in admit a closed embedding into a smooth variety (or
manifold, depending on the context) M :

i : X ↪→M.

For a sheaf F on M and on open subset U of M , denote the sections over U supported on X as

Γ[X](U,F) = {f ∈ Γ(U,F) | supp(f) ∈ X}.

The functor Γ[X] of taking global sections supported on X is left exact. Its right derived functors
at the constant sheaf compute the cohomology of M relative to the complement of X, and this is
precisely how we thought of the Borel-Moore homology of X:

RkΓ[X](CM ) = Hk(M,M \X) = Hm−k(X).

Here m = dimR(M) and CM denotes the constant sheaf on M , i.e. the pullback of C under the map
from M to a point.

Define i! : Shv(M)→ Shv(X) by

Γ(V, i!F) = lim
U

Γ[X](U,F)

where V is on open subset of X and the limit is over open subsets U of M that contain V , directed
by inclusion. The functor i! is left exact and we have

Hp(X,Ri!(CM [m])) = H−p(X).

In words, the derived functor Ri! of i! computes Borel-Moore homology after shifting the constant
sheaf CM in the derived category by the real dimension of M . We see that the sheaf Ri!(CM [m]))
of X plays a special role, and therefore we give it a special name:
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Definition. The dualizing complex on X is defined as DX = Ri!(CM [m])).

To be clear, the dualizing complex is an object of the bounded derived category Db(Shv(X)) of
sheaves on X, and it has the special property that Hp(X,DX) = H−p(X).

1.2 Constructible complexes

Let X be a complex algebraic variety. A sheaf F on X is called constructible if there exists a
finite algebraic stratification X =

∐
Xα of X such that for each α, the stratum Xα is a locally

closed smooth algebraic subvariety of X and the restriction of F to Xα is a local system. A possibly
helpful diagram to consider is the following:

Shv(X)
res // Shv(Xα)

{constructible sheaves}
?�

OO

//___ LS(Xα)
?�

OO

Let Db(Shv(X)) denote the bounded derived category of sheaves on X. An object A of Db(Shv(X))
is said to be a constructible complex if all the cohomology sheaves Hi(A) are constructible. Let
Db(X) be the full subcategory of Db(Shv(X)) consisting of constructible complexes. (Warning:
Db(X) is not the derived category of constructible sheaves.) The prototypical example of a con-
structible complex is the de Rham complex on X. The actual sheaves in the complex are ‘big’,
while the cohomology is locally constant on strata so is in some sense more manageable.

1.3 Verdier duality

We return to the case of closed embedding i : X ↪→M . The functor Ri! takes Db(M) to Db(X). In
particular, the dualizing complex DX is constructible. The Verdier duality functor Db(X)→ Db(X)
is defined as

A 7→ A∨ = Hom(A,DX),

where Hom denotes the internal hom in Db(X). Here we use the property that the internal hom in
the entire derived category Db(Shv(X)) of two constructible complexes is again constructible.

Some basic properties of the Verdier duality functor are that (CX)∨ = DX and (F∨)∨ = F .

For an algebraic map f : X → Y , let f∗ and f∗ denote the derived functors of sheaf-theoretic direct
and inverse image, respectively. These take constructible complexes to constructible complexes and
form an adjoint pair (f∗, f∗). There is another pair of adjoint functors (f!, f

!) defined using Verdier
duality:

f!A = (f∗(A
∨))∨ f !B = (f∗(B∨))∨

for an object A in Db(X) and an object B in Db(Y ). These functors enjoy the following properties

• H•(Y, f∗A) = H•(X,A)

• f∗(CY ) = CX
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• f !(DY ) = DX

• If f is proper, then f! = f∗.

• If f is smooth with smooth fibers of real dimension d, then f ! = f∗[d].

• For a closed embedding i : X ↪→M , the previous definition of i! coincides with the new one.

• Base change: For a Cartesian square

X ×W Y
f̃ //

g̃

��

Y

g

��
X

f // W

.

we have g!f∗ = f̃∗g̃
!

2 The convolution algebra and the Ext algebra

Let M be a smooth complex variety with m = dimR(M) and µ : M → N a proper map to a
(not necessarily smooth) variety N . Let Z = M ×N M be the fiber product, and recall from last
time that the Borel-Moore homology H∗(Z) has a convolution algebra structure, and Hm(Z) is a
subalgebra. We abbreviate Hm(Z) by H(Z). The example to keep in mind is the Springer resolution
µ : Ñ → N , where Z = Ñ ×N Ñ is the Stienberg variety.

If A and B are complexes in Db(X), their Ext groups are defined as shifted homs:

ExtkDb(X)(A,B) = HomDb(X)(A,B[k]).

We can also express the Ext groups in terms of cohomology with coefficients in the internal hom
sheaf:

ExtkDb(X)(A,B) = Hk(X,Hom(A,B)).

Set L = µ∗(CM [m]) ∈ Db(N). The main result of this section is an isomorphism between the
convolution algebra H∗(Z) and the Ext algebra of L:

Proposition 1. There is a (not necessarily grading-preserving) isomorphism of algebras

H∗(Z) ' Ext∗Db(N)(L,L).

Moreover, H(Z) ' EndDb(N)(L).

Note: In my notes on representations of finite groups for the Eugene workshop, we demonstrate
that a certain convolution algebra of functions on a product X × X of a finite set with itself is
isomorphic to a matrix algebra. The present result is a generalization (in the appropriate sense) of
the result about finite sets.
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Proof. (sketch) Consider the Cartesian square

Z = M ×N M
p2 //

p1

��

M

µ

��
M

µ // N

.

In this proof, we ignore gradings as well as shifts in the derived category. We have

Ext∗Db(N)(L,L) = Ext∗Db(N)(µ∗(CM ), µ∗(CM ))

= Ext∗Db(N)(µ!(CM ), µ∗(CM )) since µ is proper

= Ext∗Db(M)(CM , µ
!µ∗(CM )) by adjunction

= H∗(M,Hom(CM , µ!µ∗(CM ))

= H∗(M,µ!µ∗(CM )) since Hom out of the constant sheaf does nothing

= H∗(M, (p1)∗(p2)
!(CM )) by base change

= H∗(Z, (p2)
!(CM )) by a property of the direct image

= H∗(Z,DZ)

= H∗(Z)

Keeping track of the indices and gradings in the above computation, one obtains that H(Z) =
EndDb(N)(L). The compatibility of the algebra structures is a consequence of base change; it is
helpful to consider the diagram

M ×N M ×N M

wwoooooooooooo

�� ''OOOOOOOOOOOO

Z

�� ''OOOOOOOOOOOOOO Z

wwoooooooooooooo

''OOOOOOOOOOOOOO Z

wwoooooooooooooo

��
M

''OOOOOOOOOOOOOO M

��

M

wwoooooooooooooo

N

.

3 An application of BBD Decomposition

In this section we see how the Springer correspondence from last time follows from a decomposition
theorem of Beilinson, Bernstein, and Deligne. We will not state the theorem in full generality, only
the special cse that is relevant for us.
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3.1 Semi-smallness

We adopt the setting of the previous section. Assume that the smooth complex variety M is
connected and that the proper map µ : M → N is projective. For x ∈ N , let Mx = µ−1(x) denote
the the fiber over x.

It is possible to find a finite stratification N =
∐
αNα of N into locally closed smooth subvarieties

Nα such that µ : µ−1(Nα)→ Nα is a locally trivial topological fibration.

Definition. The map µ is semi-small if for every stratum Nα and every x ∈ Nα, we have

dimC(Nα)− 2 dimC(Mx) = dimC(M)

Remark. This definition can be interpreted as saying the the fibers of µ don’t ‘grow very quickly’.
Some authors would refer to the above condition as strictly semi-small and would reserve the term
semi-small for the condition where we replace the equals sign by ‘≤’.

Theorem 2. The Springer resolution is semi-small.

3.2 Intersection cohomology complexes

We adopt the following notation. Let φ = (Nφ, χφ) denote a pair consisting of a stratum Nφ of N
(that is, Nφ = Nα for some α) and an irreducible local system χφ ∈ LS(Nφ) on the stratum Nφ.
Two such pairs φ = (Nφ, χφ) and ψ = (Nψ, χψ) are called isomorphic if Nφ = Nψ and, in addition,
the local systems χφ and χψ are isomorphic.

There is a procedure due to Deligne-Goresky-MacPherson for associating a object ICφ of Db(N)
to a pair φ = (Nφ, χφ), called the intersection cohomology complex of φ. Among the properties
of the intersection cohomology complexes are the following:

• Non-isomorphic pairs φ and ψ give rise to non-isomorphic intersection cohomology complexes.

• The category Perv(N) of perverse sheaves on N can be defined as a certain heart of the tri-
angulated category Db(N) of constructible complexes. In particular, Perv(N) is a full abelian
subcategory of Db(N). The intersection cohomology sheaves ICφ are objects of Perv(N).

• Every ICφ is a simple object of Perv(N), and we have

HomPerv(N)(ICφ, ICψ) = Cδφ,ψ.

Note that the same equation holds if we replace Perv(N) by Db(N).

3.3 Special case of BBD

We are in a position to state a special case of the Beilinson-Bernstein-Deligne decomposition theo-
rem:
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Theorem 3. Let µ : M → N as above. If µ is semi-small, then

1. µ∗(CM [m]) =
⊕

φ=(Nφ,χφ)
Lφ ⊗ ICφ for some finite-dimensional vector spaces Lφ.

2. For any α, the collection {H(Mx) | x ∈ Nα} forms a local system on Nα.

3. The vector space Lφ can be identified with Homπ(N,x)(H(Mx), χφ).

A possibly more precise way to state the second part of the theorem is that there exists a local
system on Nα whose stalk at x is precisely the homology of the fiber Mx. This is a consequence of
the assumption that µ is a locally trivial fibration over each stratum.

In the last statment, we use the fact that the category of local systems on a (smooth) stratum
Nα is equivalent to the category of representations of the fundamental group π(Nα, x) of Nα at any
point x.

We conclude with the following computation:

H(Z) = EndPerv(N)(L,L)

= HomPerv(N)(µ∗(CM [m]), µ∗(CM [m]))

= HomPerv(N)(
⊕
φ

Lφ ⊗ ICφ,
⊕
ψ

Lψ ⊗ ICψ)

=
⊕
φ

HomPerv(N)(Lφ ⊗ ICφ,
⊕
ψ

Lψ ⊗ ICψ)

=
⊕
φ

HomPerv(N)(Lφ ⊗ ICφ, Lφ ⊗ ICφ)

=
⊕
φ

HomC(Lφ, Lφ)

=
⊕
φ

EndC(Lφ)

Therefore, the irreducible representations of H(Z) can be identified with the nonzero elements of
the collection {Lφ = Homπ(N,x)(H(Mx), χφ)}.

Note: In the fourth equality of the above computation, the coproduct in the first variable of the
hom comes out as a coproduct becuase (1) we assume that the stratification is finite, (2) only finitely
many of the Lφ with fixed Nφ are nonzero since only finitely many irreducbile representations of
π1(N, x) can appear in a finite-dimensional vector space, and (3) Perv(N) is an abelian category, so
finite products and coproducts coincide.
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