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1. Introduction

In this talk, we construct the Drinfeld-Jimbo quantization of the universal enveloping
algebra of sl2. This quantization emerges from consideration of the Sklyanin Poisson-Lie
bracket on the group SL2, and corresponding additional structure on the Lie algebra sl2.
There is a menagerie of Hopf algebras that bear the name ‘quantum group’; we define each
of them in the case of sl2 and illustrate their interrelations. These Hopf algebras include
the formal deformation, the rational form, the Lusztig integral form, the De Concini - Kac
integral form, and the small quantum group. We give an overview of the representation
theory and structure of several of these algebras, and describe phenomena that emerge when
the quantum parameter is a root of unity.

Before specializing to the case of sl2, however, we begin with an overview of the general
principles behind the theory of quantum groups.

2. The classical picture

The main objects are:

• Start with a semisimple linear algebraic group G over C.
• Let g denote the Lie algebra of G.
• Let Ug be the universal enveloping algebra. This is a Hopf algebra.

We will consider the following extra structures on these objects, which will be defined more
precisely later on:

• Poisson-Lie structures on the group G. The motivation for these structures originates
in classical mechanics for a dynamical system whose phase space is a group.
• Lie bialgebra structures on the Lie algebra g. These structures are obtained through
differentiation of the Poisson bracket on G.
• Co-Poisson-Hopf algebra structures on the Hopf algebra Ug. These structures are
obtained by extending the Lie bialgebra structure on g.

More specifically, we will be interested in a single example of each of these structures:

• The Sklyanin Poisson-Lie bracket on G, which originates in classical inverse scattering
theory.
• The ‘standard’ Lie bialgebra structure on g, which is obtained from differentiating
the Sklyanin bracket. It depends on a choice of Cartan subalgebra, and can be
characterized in terms of its restriction to sl2-triples.
• The corresponding ‘standard’ co-Poisson-Hopf algebra structure on Ug, denoted δstd.
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3. Quantization

The passage from classical mechanics to quantum mechanics corresponds to the quantiza-
tion of the universal enveloping algebra equipped with its standard co-Poisson-Hopf algebra
structure.

(Ug, δstd)

quantization

))
U~gclassical limit ~ = 0

oo

Specifically, we construct a Hopf algebra U~g over the ring C[[~]] of formal power series in
the variable ~ whose evaluation at ~ = 0 recovers Ug with its Hopf algebra structure, and
the Lie bialgebra structure appears through cocommutators. In other words, (Ug, δstd) is the
classical limit of U~g. The algebra U~g is called the formal deformation as it defined over
the algebra C[[~]] of functions on the formal disk.

One can further consider a ‘rational form’ of the quantum group as a Hopf algebra UQ(t)(g)
defined over the field Q(t) of rational functions in the variable t. For any transcendental
complex number q there is an evaluation morphism Q(t)→ C, and we can specialize UQ(t)(g)
along this map to obtain a finitely generated Hopf algebra over C. The rational form includes
into the formal deformation (with scalars extended to the fraction field of C[[~]]) with t 7→ e~.

In order to evaluate to non-transcendental complex numbers, one must choose an integral
form of the quantum group, namely, a A = Z[t, t−1]-subalgebra of the rational form UQ(t)(g)
whose extension of scalars to Q(t) recovers the full rational form. There are two main choices
for this integral form, known as the De Concini - Kac form UDK

A (g) and the Lusztig ULus
A (g).

These can be evaluated to any nonzero complex number q ∈ C×, and the two specializations
coincide when q is not a root of unity. (If q is transcendental, they also coincide with the
specialization of the rational form.) We denote this common specialization by Uqg.

If q is a root of unity, however, the specializations UDK
q (g) and ULus

q (g) differ drastically in
their structure and representation theory. We will see that the category of finite-dimensional
modules for the Lusztig form ULus

q (g), although not semisimple, has irreducible objects in-
dexed by dominant weights, just like the classical enveloping algebra Ug. Moreover, the two
algebras are linked via Lusztig’s quantum Frobenius morphism

Fr : ULus
q (g)−→Ug.

This map of Hopf algebras is surjective, and its kernel is generated by the augmentation
ideal of a finite-dimensional sub-Hopf algebra uqg of ULus

q (g), known as the small quantum
group.

On the other hand, the DeConcini-Kac specialization at a root of unity q contains a large
central subalgebra isomorphic to the algebra of functions O(G∗) of the dual Poisson-Lie
group G∗ of G, and its representation theory can be understood through this subalgebra and
the full center Zq = Z(UDK

q (g)). In fact, the dimensions of the irreducible representations
are bounded, and irreducibles are generically determined by their central character, valued
in Spec(Zq), which is finite over G∗. Finally, the quotient of UDK

q (g) by the augmentation
ideal of O(G∗) recovers the small quantum group, and thus there is a map:

UDK
q (g) � uqg ↪→ ULus

q (g)
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4. Cheat sheet

To summarize the content of the previous section:

• The formal deformation U~g lives over the formal disk.
• The rational form UQ(t)(g) lives over the transcendental numbers of C.
• The integral forms UDK

A (g) and ULus
A (g) live over the complex numbers C.

• For q not a root of unity, the specializations UDK
q (g) and ULus

q (g) coincide, giving
Uqg.
• For q a root of unity, we have the morphisms:

O(G∗) ↪→ UDK
q (g) � uqg ↪→ ULus

q (g)
Fr
� Ug

where the first two maps form a ‘short exact sequence of Hopf algebras’, as do the
last two maps.

These various versions of the quantum group fit into the following diagram, in which, for
clarity, we denote by q a fixed nonzero complex number that is not a root of unity, and by ε
a primitive `-th root of unity (` > 1 odd).

(Ug, δstd)

quantization

++
U~gclassical limit ~ = 0

oo

UQ(t)g

t7→e~

OO

UDK
A (g)

t7→ε

��

t7→q

��

� � //
0�

AA

ULus
A (g)

t7→ε

��

t7→q

��

N.

]]

Uqg

O(G∗) �
� // UDK

ε (g) // // uεg
� � // ULus

ε (g)
Fr // // Ug
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5. Representation theory

When q is generic, there is an equivalence of monoidal categories between (type 1) finite-
dimensional representations of Uqg and finite-dimensional representations of the classical
enveloping algebra Ug. In particular, both categories are semisimple with irreducible objects
indexed by dominant integral weights. However, the two categories differ in their braidings.

When q is a primitive `-th root of unity (` > 1 odd), the finite-dimensional irreducible
representations of the Lusztig form ULus

ε (g) are also in bijection with the dominant integral
weights, and these can be understood in terms of the quantum Frobenius map. In particular,
the finite-dimensional irreducible representations of Ug correspond to linear combinations of
the fundamental weights all of whose coefficients are divisible by `. However, the category
of finite-dimensional representations is not semisimple It does, however, carry the structure
of a braided monoidal category.

When q is a primitive `-th root of unity (` > 1 odd), the irreducible representations of the
small quantum group uqg are in bijection a finite subset of dominant weights, namely, those
that are non-negative linear combinations of the fundamental weights with coefficients less
than `. All of these extend to give a representation of the Lusztig form, compatibly with
the indexing in terms of weights. Just like with the Lusztig form, the category of finite-
dimensional representations of the small quantum group is not semisimple, but does carry
the natural structure of a braided monoidal category.

Let q be a primitive `-th root of unity (` > 1 odd), and let Z denote the center of the De
Concini - Kac form UDK

ε (g). Each finite-dimensional irreducible representation of UDK
ε (g)

has a central character, which defines a point in Spec(Z). There is a Zariski closed subset
D ⊆ Spec(Z) such that

• For any point χ in the complement Spec(Z) \D, there is a unique irreducible repre-
sentation with central character χ. In fact, this is the Azumaya locus of UDK

ε (g) over
Spec(Z).
• For any point χ in D, there are finitely many irreducible representations with central
character χ.

This picture can be understood further in terms of the Poisson-Lie dual group G∗ and the
inclusion O(G∗) ↪→ Z. While the category of finite-dimensional representations of the De
Concini - Kac form is monoidal, it is not braided monoidal.

6. Presentations for sl2

In this section, we give presentations of the various algebras mentioned above in the case
of sl2. Fix T ⊆ SL2 to be the maximal torus of diagonal matrices, and B ⊆ SL2 the
Borel subgroup of upper-triangular matrices. The opposite Borel B− consists of the lower-
triangular matrices, and we have that B ∩ B− = T . There is a unique (up to scaling)
non-trivial Poisson-Lie structure on SL2 that restricts to Poisson-Lie structures on B and
B− that agree on T , and it is given by:

Definition 6.1. The Sklyanin Poisson-Lie bracket on O(SL2) = C[a, b, c, d]/(ad− bc = 1) is
given by:

{a, b} = ab, {a, c} = ac, {a, d} = 2bc, {b, c} = 0, {b, d} = bd, {c, d} = cd.
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The Lie algebra sl2 generated over C by elements E,F,H with Lie bracket defined by
[H,E] = 2E, [H,F ] = −2F , and [E,F ] = H. Differentiating the Sklyanin bracket on
O(SL2), we obtain the so-called ‘standard’ Lie bialgebra structure on sl2:

Definition 6.2. The standard Lie bialgebra structure on sl2 is given by

δ : sl2 → sl2 ⊗ sl2

E 7→ E ∧H, F 7→ F ∧H, H 7→ 0.

The universal enveloping algebra Usl2 is generated as an algebra over C by elements E,F,H
with relations given by the commutators:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

In addition, Usl2 has a Hopf algebra structure given extending

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X

for X ∈ {E,F,H}. Note that Usl2 is cocommutative as a Hopf algebra, since ∆(a) = ∆op(a)
for any a ∈ Usl2.

Definition 6.3. The ‘standard’ co-Poisson Hopf structure on Usl2 is defined by extending
the map δ from above to a map Usl2 → Usl2 ⊗ Usl2 using the condition

δ(a1a2) = δ(a1)∆(a2) + ∆(a1)δ(a2)

for any a1 and a2 in Usl2.

The 1-cocycle condition on δ will guarantee that δ(a1a2 − a2a1) = δ([a1, a2]) for elements
a1, a2 ∈ sl2.

Definition 6.4. The algebra U~(sl2) is the quotient of the free algebra over C[[~]] on elements
E,F, and H by the topological closure in the ~-adic topology of the ideal generated by the
elements:

[H,E] = 2E, [H,F ] = −2F, [E,F ] =
e~H − e−~H

e~ − e−~
.

The Hopf structure is given by:

∆~(H) = H ⊗ 1 + 1⊗H, ∆~(E) = E ⊗ 1 + e~H ⊗ E, ∆~(F ) = F ⊗ e−~H + 1⊗ F

S(H) = −H, S(E) = −e−~HE, S(F ) = −Fe~H

ε(E) = ε(F ) = ε(H) = 0

The algebra U~(sl2) quantizes the standard co-Poisson Hopf structure on Usl2. More
precisely:

Lemma 6.5. The following two conditions are satisfied:

(1) We recover the Hopf algebra Usl2 from U~(sl2) by setting ~ = 0.
(2) The following identity holds for X ∈ {E,F,H}:

δ(X) ≡ ∆~(X)−∆op
~ (X)

~
mod ~
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By abuse of notation, in the last equation we think of X on the left-hand-side as an element
of the Lie algebra sl2, and as an element of U~(sl2) on the right-hand-side. Note that the
right-hand-side is well-defined because Usl2 is cocommutative. The algebra U~(sl2) is the
unique quantization (up to automorphisms of C[[~]] of the form ~ 7→ ~+O(~2)) that has an
analogue of the Cartan involution

E 7→ F, F 7→ E, H 7→ −H.

Definition 6.6. The rational form UQ(t)(sl2) of the quantum group for sl2 is generated over
Q(t) by generators E,F, and K with relations:

KE = q2EK, KF = q−2FK, [E,F ] =
K −K−1

q − q−1
.

The Hopf structure is given by:
∆(K) = K ⊗K, ∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F,

S(K) = K−1, S(E) = −K−1E, S(F ) = −FK,
ε(E) = ε(F ) = 0, ε(K) = 1.

These relations are obtained from the formal deformation U~(sl2) by setting K = e~H

and t = e~. We now define the De Concini - Kac and Lusztig integral forms, which are
subalgebras of the rational form UQ(t)(sl2), defined over the the subring A = Z[t, t−1] of
Q(t). In fact, they are sub-Hopf algebras.

Definition 6.7. Define the following subalgebras of the rational form UQ(t)(sl2):

• The De Concini - Kac integral form UDK
A (g) is the A-subalgebra generated by the

elements
E, F, K, K−1, and L :=

K −K−1

t− t−1
• The Lusztig form ULus

A (g) is the A-subalgebra generated by the elements
Er

[r]q!
,
F r

[r]q!
, K, and K−1

for r = 1, 2, 3, . . . .

Here [r]q = qr−q−r

q−q−1 is the quantum integer, and [r]q! = [r]q[r− 1]q · · · [2]q[1]q it the quantum
factorial. The elements Er

[r]q !
and F r

[r]q !
are referred to as the ‘divided powers’ of E and F , and

the Lusztig form is also known as the ‘restricted’ form.
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