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Abstract

This document is a summary of the author’s lecture notes for a two-part seminar talk on
deformation theory. The first part consists mostly of examples and basic constructions in de-
formation theory; the outline is given in the first section of this document. In second part, we
follow the first six sections of Jacob Lurie’s ICM address on moduli problems for ring spectra.
The reader is warned that these notes contain many vague statements and emphasize motivation
and general ideas rather than rigorous development of the theory.

1 Outline of the first part

• Algebra structures on a vector space

• Infinitesimal deformations of an associative algebra

• The Hochschild complex and the Gerstenhaber bracket

• Differential-graded Lie algebras and the Maurer-Cartan equation

• Formal deformations of an associative algebra

• The Hochschild-Kostant-Rosenberg theorem, polyvector fields, and Poisson structures

• Deformation quantization of Poisson structures and Kontsevich’s theorem

2 Artin rings and differential graded Lie algebras

Let k be a field. Last time we considered n-th order deformations of an associative k-algebra A
using the k-algebra R = k[ε]/(εn+1). This k-algebra is ‘close’ to k in the sense that

R/nil(R) ' k.

In other words, R is a local commutative k-algebra whose maximal ideal coincides with the nilpotent
radical nil(R) and whose residue field is k. We refer to any k-algebra satisfying these conditions as
a (commutative) Artin k-algebra, and adopt the notation Artk for the category of Artin k-algebras.
If R is an Artin k-algebra, the map ε : R→ R/nil(R) = k is called the augmentation of R. Observe
that nil(R) is the unique prime ideal of R, so Spec(R) is a single point. One can consider Spec(R)
as the point Spec(k), together with ‘nilpotent fuzz’

Observe that the algebra k[[~]] of formal power series is not an Artin k-algebra, but is an inverse
limit of the Artin k-algebras k[~]/(~n) for n ≥ 1.

How do we make use of the nice properties of Artin k-algebras? Let X : Ring → Gpd denote a
groupoid-valued functor on the category Ring of commutative rings. For example, X may be the
functor of points of a scheme or a stack. Let η be an object of the groupoid X(k). We say that the
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pair x = (k, η) is a point of X. For any Artin k-algebra R ∈ Artk, the augmentation induces a map
of groupoids

X(ε) : X(R)→ X(k).

The fiber X(ε)−1(η) over the distinguished object η ∈ X(k) is defined as the groupoid whose objects
are the objects of X(R) that map to η, and whose morphisms are the morphisms in X(R) that map
to the identity morphism of η. Heuristically, the fiber encodes the extent to which we can perturb
the point x in certain directions within the scheme/ stack/ moduli space X.

For example, if X is a scheme (so that X is valued in sets rather than in groupoids), then the
fiber is the set of all η̃ ∈ X(R) making the following diagram commute:

Spec(k)
η //

ε

��

X

Spec(R)

η̃

;;wwwwwwwww

Considering all Artin k-algebras at once, we arrive at the functor

Xx : Artk → Gpd

R 7→ X(ε)−1(η)

Or perhaps, depending on the context, there may be meaningful notion of flatness and it is more
relevant to consider the functor

Xfl
x : Artk → Gpd

that assigns to R the ‘flat points’ in the fiber of X(ε) over η. The tangent space to X at x is the
value of Xx (or Xfl

x ) at the ring k[ε]/(ε2), that is:

TxX = Xx(k[ε]/(ε2)) (or Xfl
x (k[ε]/(ε2))).

Example. Consider the functor X : Ring → Gpd that assigns to a ring S the groupoid whose
objects are S-algebras and whose morphisms are isomorphisms of S-algebras. A point x = (k, η) is
just a k-algebra A and for R ∈ Artk, we have

Xx(R) = {R-algebras A′ equipped with an isomorphism A′ ⊗R k ' A of k-algebras}.

We define the flat points in Xx(R) to be those R-algebras A′ that are flat (equivalently free) as
R-modules. Then Xfl

x (R) is precisely the groupoid of R-deformations of A that was discussed in the
previous lecture. The tangent space at x is the groupoid of infinitesimal deformations of A, which is
the set Z2(A) of Hochschild 2-cocycles together with the action of the Hochschild 1-cochains C1(A)
via the differential. The components can be identified with the second Hochschild cohomology
HH2(A) of A, and the automorphism group of any point is the group Z1(A) of 1-cocycles. In
summary:

TxX = Z2(A)/C1(A) π0(TxX) = HH2(A) π1(TxX) = Z1(A).

Let R be an Artin k-algebra with maximal ideal m = nil(R) and let L• be a differential graded
(dg) Lie algebra. Then L0⊗m is a nilpotent Lie algebra, so we can exponentiate to obtain a group

2



exp(L0 ⊗ m). This group acts on the set MC(L ⊗ m) of Maurer-Cartan elements in the dg Lie
algebra L⊗m (we gave more details in the previous lecture). We consider the functor

DefL : Artk → Gpd

R 7→ MC(L⊗m)/ exp(L0 ⊗m).

We saw in the last lecture that if A is an associative k-algebra, then the shifted Hochschild complex
C•(A)[1] forms a dg Lie algebra under the Gerstenhaber bracket. Moreover, if X is the functor that
assigns to a ring S the groupoid of S-algebras, and take the point x of X corresponding to A, then
there is an isomorphism of functors

DefC•(A)[1] = Xx.

This isomorphism indicates that the dg Lie algebra C•(A)[1] controls the local structure of the
moduli problem of associative algebras that the point A. Similarly, there are dg Lie algebras that
control the deformations of Poisson algebras (via the complex of polyvector fields) and Lie algebras
(via the Chevalley-Eilenberg complex).

Question: Is it true more generally that, given a point x of a functor X : Ring → Gpd, we can
find a dg Lie algebra L such that Xx = DefL?

The affirmative answer has been accepted as an experimental fact in many cases when X arises
naturally from a geometric deformation problem. Our goal in the next sections is to give a precise
formulation of this phenomenon in the setting of ∞-categories, where we can state a theorem that
responds to a higher version of this question.

3 Higher algebra reminders

The first reminder is of simplicial localization, which is a major source of ∞-categories. Let C be a
category and W a set of morphisms of C. We can formally invert the morphisms in W to produce
a category C[W−1] called the Gabriel-Zisman localization of C with respect to W . The idea is that
the objects of C[W−1] are the same as the objects of C, while the morphisms are given by zigzags,
where the ‘backward’ pointing arrows are required to be in W . An example to keep in mind is the
derived category D(R) of a ring R as the localization of the category ChainR of chain complexes
over R along quasi-isomorphisms.

Gabriel-Zisman localization undesirable in general for several reasons. First, significant structure
is lost when passing from C to C[W−1]. For example, if C is abelian, or if it had all limits and
colimits, then C[W−1] may not share these properties. Another shortcoming of Gabriel-Zisman
localization is that, for more geometric categories, gluing constructions that work on the level of
categories may not descend to the localized categories. The main example is the derived category of
quasi-coherent sheaves on P1. So, despite its name, the localization C[W−1] is not local in nature.

Instead, there is a construction known as simplicial (or Dwyer-Kan) localization that produces
an ∞-category with the usual localization universal property in the homotopy category of ∞-
categories. Henceforth, C[W−1] will denote the simplicial localization rather than the Gabriel-
Zisman localization. The details of the construction are a topic for another time. Roughly, the
strategy is to produce a simplicial set out of the collection of zigzags that form the morphisms
between any two objects in the Gabriel-Zisman localization. Since simplicially enriched categories
are a model for ∞-categories the result can be regarded as an ∞-category.
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For example, localizing the category chain complexes over a ring R along quasi-isomorphisms
produces the so-called∞-derived categoryD∞(R) of R-modules. The homotopy category ofD∞(R)
is the usual derived category D(R) of R-modules.

Other examples that are relevant for our discussion are (1) the localization of the category Liedgk
of dg Lie algebras over a field k along quasi-isomorphisms, and (2) the localization S of the category
of CW complexes along weak homotopy equivalences. The latter is called the∞-category of spaces.

The second reminder is that, in the setting of ∞-categories, classical algebraic structures are
replaced by their homotopical analogues. Instead of the category Set of sets, we consider the ∞-
category S of spaces. Instead of the symmetric monoidal category of abelian groups with tensor
product and unit the integers Z, we consider the symmetric monoidal ∞-category of spectra with
smash product and unit the sphere spectrum. One can embed the category of abelian groups into
the category of spectra via the construction of Eilenberg-Maclane spectra. The commutative ring
objects in spectra are called E∞-rings; these include ordinary commutative rings as discrete spectra.
Let ModR denote the ∞-category of module spectra for an E∞-ring R. If R is an ordinary ring,
then ModR ' D∞(R).

An alternative approach to the rest of this talk is to work in the ∞-derived category D∞(Z)
of Z instead of the category of spectra. For settings where all fields under consideration have
characteristic zero, we can even restrict our attention to D∞(Q).

Let k be a field, regarded as a discrete spectrum. There are two common models for the ∞-
category Alg

(n)
k of En-algebras over k. The first is as representations of the little n-cubes operad

in the symmetric monoidal ∞-category Modk of k-module spectra. The second is as the iterated
algebra objects in Modk:

Alg
(n)
k = Alg(Alg(. . .Alg(Modk) . . . )).

Both models generalize from Modk to any symmetric monoidal ∞-category. The ∞-category Alg
(1)
k

can be identified with the simplicial localization of the category of dg algebras over k along quasi-
isomorphisms. Also, any E∞-algebra over k can be be regarded as an En-algebra over k for any
k.

4 Derived and formal moduli problems

We define a classical moduli problem to be a functor X0 : Ring → Gpd. In particular, any scheme
or stack is a classical moduli problem. The appropriate analogue of a classical moduli problem in
the ∞-category setting is called a derived moduli problem, and is defined as a functor

X : E∞Ring→ S,

where E∞Ring denotes the category of E∞-rings. We say that the derived moduli problem X is an
enhancement of the classical moduli problem X0 if the following diagram commutes:

Ring
X0 //

��

Gpd

��
E∞Ring

X // S

where the left vertical map is the inclusion of commutative rings as discrete E∞-ring spectra, and
the right vertical map is the inclusion of groupoids as 1-types.
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In the classical setting, we studied the local structure of a moduli problem by choosing a k-rational
point and probing that point with Artin k-algebras. We adopt a similar approach in studying the
local structure of a derived moduli problem.

A point of a derived moduli problem X is a point x = (k, η) where k is a field and η is a point of
the topological space X(k). Now we can again use Artin k-algebras to investigate the local structure
of X at x. But one reason for passing to the homotopical setting is that we have more algebras (i.e
ring spectra) that are ‘close’ to k, and we can use these to obtain a more complete picture of X near
x. The analogue of an Artin k-algebra is an E∞-Artin k-algebra, which is defined as a E∞-algebra
R over k that satisfies

• π0(R) is an (ordinary, commutative) Artin k-algebra.

• dim(πn(R)) is finite for all n and is 0 for n < 0 and n >> 0.

In particular, there is an augmentation map of E∞-algebras ε : R → k. Let Art∞k denote the
category of E∞-Artin k-algebras.

Given a derived moduli problem X : E∞Ring→ S and a point x = (k, η) of X, we have a functor

Xx : Art∞k → S
R 7→ X(ε)−1(η)

As in the classical case, the intuition is that Xx encodes local information about the moduli problem
X. Under mild assumptions on X, the functor Xx is an example of a formal moduli problem. A
formal moduli problem over k is a functor F : Art∞k → S that satisfies the following two conditions:

• The space F (k) is contractible.

• Suppose A → B and A′ → B are morphisms in Art∞k that are surjections on π0. Then the
induced map F (A×B A′)→ F (A)×F (B) F (A′) is a homotopy equivalence.

One should think of the second condition as a gluing condition. Note that π0 picks out the
‘geometric’ piece of a spectrum.

Recall that if X is a scheme and x = (k, η) is a point, then the tangent space of X at x is the
fiber over η under the map X(k[ε]/(ε2)) → X(k). It is possible to perform an analogue of this
construction in the setting of higher algebra. Let F : Art∞k → S be an formal moduli problem. (The
picture to have in mind is that F gives information about the local structure of a derived moduli
problem X : E∞Ring→ S.)
Let TF (0) = F (k[ε]/(ε2)). Note that the ring k[ε]/(ε2) can be identified with the square-zero

extension k ⊕ k. If k[n] denotes the n-fold shift of k (considered as a discrete spectrum) in the
category of spectra, then we can similarly consider the square-zero extension k ⊕ k[n], which is an
∞-Artin k-algebra. Now let TF (n) = F (k ⊕ k[n]). One can show that TF = {TF (n)}n>0 defines a
spectrum, called the tangent complex of F .

(The reason TF is called a complex is that there is an equivalence of the ∞-categories of k-
module spectra and the simplicial localization D∞(k) of the chain complexes of k-modules along
quasi-isomorphisms.)
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Claim. The spectrum TF [−1] has the structure of a dg Lie algebra over k.

The heuristic explanation is:

• Define ΩF : Art∞k → S by (ΩF )(R) = Ω(F (R)). In words, (ΩF )(R) is the loop space of F (R).

• Argue that ΩF is a formal moduli problem and in fact a group object (or an E1 = A∞ object)
in the ∞-category of formal moduli problems.

• Therefore, TΩF has an dg Lie algebra (i.e. L∞) structure.

• Show that TF [−1] = TΩF .

It turns out that F is determined by TF in the following sense:

Theorem 1. Assume that the characteristic of k is zero. Then there is an equivlance of∞-categories

Moduli ∼→ Liedgk [W−1]

given by F → TF [−1], where Moduli ⊂ Fun(Art∞k ,S) denotes the full subcategory of formal moduli
problems.

Roughly, the inverse is given by considering solutions to the Maurer-Cartan equation of a dg Lie
algebra and producing a formal moduli problem similar to the functor DefL defined above. This
theorem reflects the Koszul duality of the commutative algebra operad (appearing via Art∞k ) and
Lie algebra operad. It also justifies the thesis that the local structure of moduli space at a point is
controlled by a dg Lie algebra (c.f. the question at the end of section 2 above).

5 Noncommutative formal moduli problems

Now we consider the noncommutative case by passing from E∞-algebras to En-algebras over k.
Once again, we are interested in the En-algebras over k that are ‘close’ to k, and we arrive that
following generalization of what we called E∞-Artin k-algebras: An En-algebra R over a field k is
En-Artin over k if

• π0(R)/nil(π0(R)) ' k, so π0(R) is a noncommutative Artin k-algebra with residue field k.

• dim(πn(R)) is finite for all n and is 0 for n < 0 and n >> 0.

The category of small En-algebras over k is denoted Artnk . We define a formal En-moduli problem
over k to be a functor F : Artnk → S such that

• The space F (k) is contractible.

• Suppose A → B and A′ → B are morphisms in Artnk that are surjections on π0. Then the
induced map F (A×B A′)→ F (A)×F (B) F (A′) is a homotopy equivalence.

Each E∞-Artin k-algebra is in particular and En-Artin k-algebra, that is, there is an inclusion
ι : Art∞k → Artnk . So any formal En-moduli problem F defines a formal moduli problem, and the
tangent complex is defined as the tangent complex of F ◦ ι.
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Theorem 2. Let k be a field (of any characteristic). There is an equivalence of ∞-categories

Φ : Modulin
∼→ Alg(n)

aug

where Modulin ⊂ Fun(Artnk ,S) denotes the full subcategory of formal En-moduli problems over k
and Alg

(n)
aug denotes the category of augmented En-algebras over k.

It turns out that the augmentation ideal of the image Φ(F ) can be identified with the shifted
tangent complex TF [−n] of F . This theorem reflects the Koszul self-duality of the En operad, for
n ≥ 0. In Chaink, representations of the En operad for n ≥ 2 are vector spaces equipped with a
commutative multiplication and a Lie bracket of degree n−1. In this sense, a representation of En is
a combination of representations of the operads Comm and Lie. If we accept that the operads Comm
and Lie are mutually dual, then the above observation gives one explanation for the self-duality of
the En operad.
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