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Abstract

The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover
of SO(3). This allows a simple computation of the fundamental group of SO(n). We
also show how SU(2) × SU(2) is a double cover of SO(4). Finally, we argue that O(4)
is generated by the left and right multiplication maps together with quaternionic con-
jugation.

1 A brief review of the quaternions H

Let H be the free R-module on the set {1, i, j, k}. Therefore, H is a four-dimensional vector
space in which an arbitrary element x can be written as x = a + bi + cj + dk for some
real numbers a, b, c, and d. Define an algebra structure on H by extending linearly the
multiplication of the finite group of quaternions

Q8 = {±1,±i,±j,±k}.

By a slight abuse of terminology, elements of H are called quaternions. The conjugate of an
element x = a+ bi+ cj + dk of H is defined as x̄ = a− bi− cj − dk, and the map x 7→ xx̄
defines a norm on H. The subspace ImH of purely imaginary quaternions is the subspace
with a = 0. The unit sphere in H, i.e. the unit quaternions, forms a multiplicative group,
denoted U , that is diffeomorphic to S3.

Lemma 1. The center of H is Span{1}.

Proof. It is clear that Span{1} is contained in the center since the center of Q8 is {±1}.
Suppose x = a+ bi+ cj + dk is in the center. Then xi = ix implies that

ai− b− ck + dj = ai− b+ ck − dj,

so c = d = 0 and x = a+ bi. Now, xj = jx implies that

aj + bk = aj − bk.

Hence b = 0 and x = a ∈ Span{1}.
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2 U ' SU(2)

We argue that, as Lie groups, U is isomorphic to the special unitary group SU(2). For each
g ∈ U , there is a map

H ' R4 → H ' R4

x 7→ gx.

This map is R-linear since

• the elements of Span{1}, which are the scalars in this case, are in the center of H, and

• multiplication distributes over addition in the ring H.

Moreover, the map is an isometry by the multiplicativity of the norm: |gx| = |g||x| = |x|
for any g ∈ U and x ∈ H. Hence U acts by isometries on R4 by left multiplication. An
identical argument confirms that right multiplication defines an action by isometries of U
on R4.

Let Ri : H → H denote right multiplication by i. Then (Ri)2 = − Id. Define a
nondegenerate symmetric bilinear form on H as

B(a+ bi+ cj + dk, x+ yi+ zj + wk) = ax+ by + cz + dw.

The norm defined above on H is the same as the norm induced by B. A short calculation
shows that B(Ri(v), w) = −B(v,Ri(w)) for any v, w ∈ H. The maps Ri and B are enough to
define a complex vector space structure with a Hermitian form on H. Specifically, a+bi ∈ C
acts as

(a+ bi) · v = a · v + b · (Ri(v)) = av + b(iv),

and the Hermitian form H is defined as

H(v, w) = B(v, w) + i · ω(v, w)

where ω(v, w) := −B(Ri(v), w) is a skew-symmetric nondegenerate bilinear form (called a
symplectic form). In particular, ω(v, v) = 0 for all v ∈ H, and the norm induced by H is
equal to the norm on H defined above:

|v|H = H(v, v) = B(v, v) = a2 + b2 + c2 + d2 = |v|.

Since H is a 2-dimensional complex vector space, the group SU(2) can be identified with
the norm-preserving transformations of H. Each element g of U defines a such transforma-
tion by the left multiplication map Lg. Identifying Lg with g, we see that U embeds as a
subgroup in SU(2). Both are connected 3-dimensional Lie groups, so U is isomorphic to
SU(2).

Here’s another way to see the isomorphism. Recall that SU(2) is the set of 2 by 2
matrices A over C with ĀTA = I with determinant 1. A standard argument shows the first
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equality below, and the rest follow:

SU(2) = {
[

a b
−b̄ ā

]
: a, b ∈ C, |a|2 + |b|2 = 1}

= {
[

x+ iy u+ iv
−u+ iv x− iy

]
: x, y, u, v ∈ R, x2 + y2 + u2 + v2 = 1}

= {x
[

1 0
0 1

]
+ y

[
i 0
0 −i

]
+ u

[
0 1
−1 0

]
+ v

[
0 i
i 0

]
:

x, y, u, v ∈ R, x2 + y2 + u2 + v2 = 1}

A generic element x = a+ bi+ cj + dk of H can be written as x = (a+ bi) + (c+ di)j.
This produces a decomposition H = C ⊕ Cj ' C2. Since j2 = −1, this defines a complex
structure on H. With this decomposition in mind, the elements 1,i, j, and k act on the right
as

1 :
[

1 0
0 1

]
i :

[
i 0
0 −i

]
j :

[
0 −1
1 0

]
k :

[
0 i
i 0

]
These identifications reveal the isomorphism U ' SU(2).

3 The cover SU(2)→ SO(3)

We will make use of the following lemma, which is proven assuming results from Introduction
to Smooth Manifolds by John Lee.

Lemma 2. Suppose f : G → H is a map of Lie groups of the same dimension, with H
connected. If the kernel of f is discrete, then f is a covering map.

Proof. As a Lie group homomorphism, f has constant rank. The rank is equal to the
codimension of the kernel, which in this case is dimG − 0 = dimG = dimH. Hence f
has full rank and is in particular a local diffeomorphism. Therefore, a neighborhood of
the identity in G maps diffeomorphically to a neighborhood of the identity of H. The
connectivity of H implies that H is generated by any open neighborhood of the identity.
Consequently, f is surjective. Since the kernel is discrete, f must be a covering map.

Recall that an R-algebra endomorphism of H is a ring homomorphism from H to itself
that fixes 1. Let Aut(H) denote the invertible R-algebra endomorphisms of H. Then
Aut(H) is a closed subgroup of GL(H) ' GL4R, hence a Lie group. There is a Lie group
homomorphism

H − {0} → Aut(H)

g 7→ (x 7→ gxg−1)

whose kernel is the center Z(H) of H. Observe that each g acts by isometries since |gxg−1| =
|g||x||g−1| = |gg−1||x| = |x| for any x, g ∈ H. Each g fixes 1, hence fixes

1⊥ = {x ∈ H : B(1, x)} = {a+ bi+ cj + dk ∈ H : a = 0} = Im H
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as well. Thus each g acts my isometries fixing 0 on Im H. Identifying Im H with R3, we see
that the homomorphism above induces a map

H − {0} → O(3).

The codomain can be refined to special orthogonal group SO(3) since H−{0} is connected.
We restrict this map to U to obtain a Lie group homomorphism

φ : U → SO(3)

whose kernel is the discrete subgroup Z(H) ∩ U = {±1}. Using the isomorphism of the
previous section and Lemma 2, it follows that φ : SU(2)→ SO(3) is a 2-fold covering map.
Note that SU(2) is simply connected since SU(2) ' U is diffeomorphic to S3. The 2-fold
cover φ implies that π1(SO(3)) = Z/2. In fact, SO(3) is diffeomorphic to RP3.

4 The fundamental group of SO(n)

Th orthogonal group SO(2) consists of rotations about the origin in R2; it is therefore iso-
morphic to the circle S1 and its fundamental group is Z. For any n, SO(n) acts transitively
on Sn−1 with stabilizer SO(n− 1). Hence, there is a fibration

SO(n− 1) � � // SO(n)

��
Sn−1

with associated long exact sequence in homotopy given by

· · · → π2(Sn−1)→ π1(SO(n− 1))→ π1(SO(n))→ π1(Sn−1)→ 1.

For n ≥ 4, the homotopy group π2(Sn−1) is trivial, so we obtain an isomorphism

π1(SO(n− 1)) ' π1(SO(n)).

Since SO(3) = Z/2, by induction we conclude that

π1(SO(n)) =
{

Z if n = 2
Z/2 if n ≥ 3

.

5 The cover SU(2)× SU(2)→ SO(4)

For each pair (g, h) ∈ U × U , there is a map on H ' R4 defined by x 7→ gxh. An argument
similar to that in part (c) shows that each such map is R-linear and norm-preserving, hence
an element of SO(4). Since U × U is connected, we obtain a map

φ : U × U → SO(4)
(g, h) 7→ (x 7→ gxh).
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It is easy to check that this is a Lie group homomorphism. We will show that the kernel of
φ is the discrete subgroup {(1, 1), (−1,−1)}. By Lemma 2, it will follow that φ is a 2-fold
covering map.

If gxh = x for all x ∈ H, then, in particular, gh = g1h = 1, so h = g−1. From previous
work, we know that x = gxg−1 for all x ∈ H if and only if g ∈ {±1}. Hence either g = 1
and h = g−1 = 1 or g = −1 and h = g−1 = −1.

6 Generators for O(4)

The last result we show is that right and left multiplication together with quaternionic
conjugation generate O(4). The quaternionic conjugation map c : x 7→ x̄ is an orientation-
reversing orthogonal transformation of H ' R4 since it involves 3 reflections. Hence c is not
in SO(4), but the other component of O(4). Let Lc : O(4)→ O(4) be left multiplication by
c, so Lc(f) = c ◦ f . Then, by standard Lie group arguments, Lc is a diffeomorphism taking
the connected component of the identity diffeomorphically to the connected component of
c. In this case, Lc takes SO(4) diffeomorphically to the component O(4) \ SO(4). Since the
map φ from above is a covering map of SO(4), we observe that

Lc ◦ φ : U × U → O(4) \ SO(4)

is also a covering map. To summarize, the map

ψ : U × U × Z/2→ O(4)

defined by
(g, h, i) 7→ (x 7→ ci(gxh))

is a covering map of O(4). Hence right and left multiplication together with quaternionic
conjugation generate O(4).

5


