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Abstract

The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover
of SO(3). This allows a simple computation of the fundamental group of SO(n). We
also show how SU(2) x SU(2) is a double cover of SO(4). Finally, we argue that O(4)
is generated by the left and right multiplication maps together with quaternionic con-
jugation.

1 A brief review of the quaternions H

Let H be the free R-module on the set {1,4, j, k}. Therefore, H is a four-dimensional vector
space in which an arbitrary element x can be written as x = a + bi + ¢j + dk for some
real numbers a,b,c, and d. Define an algebra structure on H by extending linearly the
multiplication of the finite group of quaternions

Qs = {+1, +i, +j, £k}

By a slight abuse of terminology, elements of H are called quaternions. The conjugate of an
element © = a + bi + ¢j + dk of H is defined as & = a — bi — ¢j — dk, and the map = — xZ
defines a norm on H. The subspace ImH of purely imaginary quaternions is the subspace
with @ = 0. The unit sphere in H, i.e. the unit quaternions, forms a multiplicative group,
denoted U, that is diffeomorphic to S3.

Lemma 1. The center of H is Span{1}.

Proof. Tt is clear that Span{l1} is contained in the center since the center of Qg is {£1}.
Suppose & = a + bi + ¢j + dk is in the center. Then xi = ix implies that

ai —b—ck+dj =ai— b+ ck — dj,
soc=d=0and z = a+ bi. Now, zj = jz implies that
aj + bk = aj — bk.

Hence b = 0 and = = a € Span{1}. O



2 U ~SU(2)

We argue that, as Lie groups, U is isomorphic to the special unitary group SU(2). For each
g € U, there is a map

H~R*- H~R?

T gT.
This map is R-linear since
e the elements of Span{1}, which are the scalars in this case, are in the center of H, and
e multiplication distributes over addition in the ring H.

Moreover, the map is an isometry by the multiplicativity of the norm: |gx| = |g||z| = |z
for any g € U and & € H. Hence U acts by isometries on R* by left multiplication. An
identical argument confirms that right multiplication defines an action by isometries of U
on R%.

Let R; : H — H denote right multiplication by i. Then (R;)?> = —Id. Define a
nondegenerate symmetric bilinear form on H as

Bla+bi+cj+dk,z+yi+ zj + wk) = ax + by + cz + dw.

The norm defined above on H is the same as the norm induced by B. A short calculation
shows that B(R;(v),w) = —B(v, R;(w)) for any v, w € H. The maps R; and B are enough to
define a complex vector space structure with a Hermitian form on H. Specifically, a+bi € C
acts as

(a+bi)-v=a-v+b-(Ri(v)) =av+b(iv),

and the Hermitian form H is defined as
H(v,w) = B(v,w) +i-w(v,w)

where w(v, w) := —B(R;(v),w) is a skew-symmetric nondegenerate bilinear form (called a
symplectic form). In particular, w(v,v) = 0 for all v € H, and the norm induced by H is
equal to the norm on H defined above:

vlg = H(v,v) = B(v,v) = a® +0° + & + d* = |v.

Since H is a 2-dimensional complex vector space, the group SU(2) can be identified with
the norm-preserving transformations of H. Each element g of U defines a such transforma-
tion by the left multiplication map L4. Identifying L, with g, we see that U embeds as a
subgroup in SU(2). Both are connected 3-dimensional Lie groups, so U is isomorphic to
SU(2).

Here’s another way to see the isomorphism. Recall that SU(2) is the set of 2 by 2
matrices A over C with AT A = I with determinant 1. A standard argument shows the first



equality below, and the rest follow:
a b 2 2
SU2) ={ 5 oal a,beC, |a]” + |b]* =1}
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A generic element x = a + bi + ¢j + dk of H can be written as z = (a + bi) + (¢ + di)j.
This produces a decomposition H = C @ Cj ~ C2. Since j?> = —1, this defines a complex
structure on H. With this decomposition in mind, the elements 1,7, j, and &k act on the right
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These identifications reveal the isomorphism U ~ SU(2).

o

3 The cover SU(2) — SO(3)

We will make use of the following lemma, which is proven assuming results from Introduction
to Smooth Manifolds by John Lee.

Lemma 2. Suppose f : G — H is a map of Lie groups of the same dimension, with H
connected. If the kernel of f is discrete, then f is a covering map.

Proof. As a Lie group homomorphism, f has constant rank. The rank is equal to the
codimension of the kernel, which in this case is dimG — 0 = dim G = dim H. Hence f
has full rank and is in particular a local diffeomorphism. Therefore, a neighborhood of
the identity in G maps diffeomorphically to a neighborhood of the identity of H. The
connectivity of H implies that H is generated by any open neighborhood of the identity.
Consequently, f is surjective. Since the kernel is discrete, f must be a covering map. O

Recall that an R-algebra endomorphism of H is a ring homomorphism from H to itself
that fixes 1. Let Aut(H) denote the invertible R-algebra endomorphisms of H. Then
Aut(H) is a closed subgroup of GL(H) ~ GL4R, hence a Lie group. There is a Lie group
homomorphism

H — {0} — Aut(H)
g (x> gag™)

whose kernel is the center Z(H) of H. Observe that each g acts by isometries since |grg~!| =

lgl|z|lg~| = lgg~!||=| = || for any x,g € H. Each g fixes 1, hence fixes
It={zecH:Bl,z))={a+bi+cj+dkcH:a=0}=ImH



as well. Thus each g acts my isometries fixing 0 on Im H. Identifying Im H with R?, we see
that the homomorphism above induces a map

H - {0} — 0(3).

The codomain can be refined to special orthogonal group SO(3) since H — {0} is connected.
We restrict this map to U to obtain a Lie group homomorphism

¢: U — SO(3)

whose kernel is the discrete subgroup Z(H) N U = {£1}. Using the isomorphism of the
previous section and Lemma 2, it follows that ¢ : SU(2) — SO(3) is a 2-fold covering map.
Note that SU(2) is simply connected since SU(2) ~ U is diffeomorphic to S®. The 2-fold
cover ¢ implies that 71(SO(3)) = Z/2. In fact, SO(3) is diffeomorphic to RP3.

4 The fundamental group of SO(n)

Th orthogonal group SO(2) consists of rotations about the origin in R?; it is therefore iso-
morphic to the circle S! and its fundamental group is Z. For any n, SO(n) acts transitively
on S"~! with stabilizer SO(n — 1). Hence, there is a fibration

SO(n — 1) &——=S0(n)

gn—1
with associated long exact sequence in homotopy given by
= (8" = m(SO(n — 1)) — 7 (SO(n)) — 7 (S™ ) — 1.
For n > 4, the homotopy group m(S™ 1) is trivial, so we obtain an isomorphism
m1(SO(n — 1)) ~ 71(SO(n)).
Since SO(3) = Z/2, by induction we conclude that
mEOm ={ s iins

5 The cover SU(2) x SU(2) — SO(4)

For each pair (g,h) € U x U, there is a map on H ~ R* defined by = + gzh. An argument
similar to that in part (c) shows that each such map is R-linear and norm-preserving, hence
an element of SO(4). Since U x U is connected, we obtain a map

¢:UxU — SO(4)
(g,h) — (x — gzxh).



It is easy to check that this is a Lie group homomorphism. We will show that the kernel of
¢ is the discrete subgroup {(1,1),(—1,—1)}. By Lemma 2, it will follow that ¢ is a 2-fold
covering map.

If grh = x for all = € H, then, in particular, gh = glh = 1, so h = g~ '. From previous
work, we know that = grg~! for all x € H if and only if g € {#1}. Hence either g = 1
andh=¢g'=lorg=—-land h=g'=—1.

6 Generators for O(4)

The last result we show is that right and left multiplication together with quaternionic
conjugation generate O(4). The quaternionic conjugation map ¢ : x +— T is an orientation-
reversing orthogonal transformation of H ~ R* since it involves 3 reflections. Hence c is not
in SO(4), but the other component of O(4). Let L. : O(4) — O(4) be left multiplication by
¢, 80 L.(f) = co f. Then, by standard Lie group arguments, L. is a diffeomorphism taking
the connected component of the identity diffeomorphically to the connected component of
c. In this case, L. takes SO(4) diffeomorphically to the component O(4) \ SO(4). Since the
map ¢ from above is a covering map of SO(4), we observe that

Leog:UxU — 0O(4)\ SO(4)
is also a covering map. To summarize, the map
Y :UxUXZ/2— O4)

defined by 4
(9, h,i) = (z — c'(gzh))

is a covering map of O(4). Hence right and left multiplication together with quaternionic
conjugation generate O(4).



