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Abstract

We describe, in as elementary terms as possible, a bridge from linear algebra and represen-
tation theory on the one hand, to differential and algebraic geometry on the other. This bridge
is known as the Beilinson–Bernstein localization theorem, and lies at the core of geometric
representation theory. We will begin with defining polynomials and differential operators, and
illustrate the key ideas behind the theorem via easy examples and calculations.
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1 Introduction

This talk will be about a bridge between two areas of mathematics. On the one hand, we have
linear algebra, abstract algebra, and representation theory, where there are many problems that
are relatively easy to state but difficult to solve. These problems often come from other areas of
mathematics, such as number theory, group theory, theoretical physics, etc. On the other hand we
have differential and algebraic geometry, where there are also many hard problems inspired from
other fields, but where we have powerful geometric techniques. There are many bridges between
these two vast areas, and the actual picture is more complicated than this caricature, but it will
work for our expository purposes. The bridge we’ll focus on is known as the Beilinson–Bernstein
localization theorem, and is one of the most important results of geometric representation theory.

2 Basics

Let C[x] be the set of polynomials in one variable x over the complex numbers. For example we
have x2, (3 + 2i)x3 + 7, as well as constant polynomials such at 4. We can add and multiply
polynomials, and these operations give C[x] the structure of an algebra. Multiplication distributes
over addition, and we can subtract polynomials, but we cannot always divide.

We will also need the algebra C[x, y] of polynomials in two variables. Note that x and y commute.
So that x3yx7y2 is the same as x10y3.

We think of C[x] as the set of algebraic functions on one-dimensional complex space C1, and of
C[x, y] as the set of algebraic functions on two-dimensional complex space C2. Part of the philosophy
of algebraic geometry is that thinking about certain nice spaces (in this case C1 or C2) is essentially
the same as studying its algebra of functions.

Definition 1. The operator of differentiation is given by taking derivatives of polynomials:

∂ : C[x]→ C[x]

f(x) 7→ f ′(x)

The operator of multiplication by x is given by:

x : C[x]→ C[x]

f(x) 7→ xf(x)

We abuse notation slightly by using the same symbol x for an element of C[x] and an operator on
C[x].

Proposition 2. The operators ∂ and x satisfy the equation:

∂ ◦ x− x ◦ ∂ = identity.

Proof. Let f(x) ∈ C[x] be a polynomial. Then

(∂ ◦ x− x ◦ ∂)(f(x)) = ∂(xf(x))− xf ′(x) = f(x) + xf ′(x)− xf ′(x) = f(x).
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Definition 3. The algebra of differential operators on C is defined as:

DC = C〈x, ∂〉/(∂x− x∂ = 1).

This definition may look daunting, but it boils down to saying that we can think of differential
operators sort of like polynomials in x and ∂, but now these two variables no longer commute.
When we multiply, we can bring all x’s to the left and all ∂’s to the left using the commutation
rule. Example.

Notation: The commutator of two elements of an algebra is denoted [a, b] = ab− ba.

Definition 4. The algebra of differential operators on C2 is defined by

DC2 = C〈x, y, ∂x, ∂y〉/([x, y] = [x, ∂y] = [∂x, ∂y] = [y, ∂x] = 0, [∂x, x] = 1 = [∂y, y])

We define a few special elements in the algebra DC2 as follows:

e = x∂y f = y∂x h = x∂x − y∂y

Exercise 5. Show that the following identities hold:

[h, e] = 2e [h, f ] = −2f [e, f ] = h.

3 Some geometry

We need to introduce one important object from geometry, namely projective space P1. We will
abbreviate the set C \ {0} of nonzero complex numbers by C×.

Definition 6. Let P1 be the quotient of C2 \ {(0, 0)} by the equivalence relation (a, b) ' (λa, λb)
for λ ∈ C×.

The space P1 is know as one-dimensional projective space over the complex numbers, and it
parametrizes lines in C2. Topologically it is a sphere, so 2-dimensional over the real numbers
and 1-dimensional over the complex numbers.

We were talking about polynomial functions on C1 and C2, and how they essentially tell you
everything about the spaces. This is not so much the case for P1. Locally it is the same as C1, but
globally it is quite different, which makes things in some sense more complicated and in another
sense easier. In fact, there aren’t any global polynomial functions on P1, but there are local ones.

In any case, one can make sens of differential operators DP1 . The operators e, f, h ∈ DC2 descend
(in a certain precise sense) to operators e, f , h in DP1 .

4 Some linear algebra

And now for something completely different (which will actually turn out to be not different at all).

Definition 7. The Lie algebra sl2 is defined as as the set of two by two matrices with trace zero:

sl2 = {A ∈ {two by two matrices over C} : trace(A) = 0}
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So if we write

A =

[
a b
c d

]
,

with a, b, c, and d complex numbers, then the condition that the trace is zero becomes the equation
a + d = 0. This might seem like a somewhat arbitrary subset of matrices, but the important
property is the following:

Exercise 8. If A and B belong to sl2 then so does their commutator [A,B] = AB −BA.

Also, it is slightly smaller than all matrices (three-dimensional over C rather than four dimensional).

In fact, it is easy to see that sl2 is spanned by the matrices E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
, and

H =

[
1 0
0 −1

]
. So any matrix in sl2 can be written as a linear combination of these matrices (with

coefficients in C).

Exercise 9. Prove the commutation relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H

5 Easy case of the Beilinson–Bernstein Theorem

Combining our observations, we see that there is a function

φ : sl2 → DC2

determined by the assignments:

E 7→ e F 7→ f H 7→ h

and extending linearly. Moreover, this function respects the brackets in the sense that

φ([A,B]) = [φ(A), φ(B)]

for any two traceless matrices A,B ∈ sl2. We now state the Beilinson–Bernstein theorem for sl2.

Theorem 10. The function φ extends to a surjective map of associative algebras

µ : U(sl2)→ DP1

whose kernel is generated by the kernel of the trivial character of the center of U(sl2). Moreover,
there is an equivalence of categories between the category of representations of sl2 with trivial central
character and D-modules on P1.
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