NOTES ON LUSZTIG’S NON-ABELIAN FOURIER TRANSFORM

IORDAN GANEV

1. PRELIMINARIES

Let G be a finite group. The group algebra of G is the vector space C[G] = {f : G — C} of
functions from G to C, equipped with the convolution product:

C[G] ® C[G] — C[G]

fegmlx—= ) flay sy)]
yeG
We write f * ¢ for the convolution of f,¢ € C[G]. For x € G, lete, € C[G]| denote the characteristic
function of x, so that {ey}rec forms a basis of C[G], and any f € C[G] can be expressed as
f = Yicc f(x)ex. Any representation p : G — GL(V) of G extends to a representation of the
group algebra C[G],
p:C[G] — End(V),

by setting g(ex) = p(x). This assignment establishes an equivalence between the category of
representations of G and the category of representations of the group algebra C[G|. Let Zg =
Z(C[G]) denote the center of the group algebra C[G]. One computes that Zg comprises the class
functions, i.e., functions constant on conjugacy classes of G:

Zc={f €C[G]| f(g) = f(xgx~1) forall g, x € G}.

We use the notation % for the set of conjugacy classes of G, so that, as a vector spaces, Zg is the
space C [%] of functions on % A source of class functions is the characters of finite-dimensional
representations. Specifically, if p : G — GL(V) is a finite-dimensional representation of G, the
character

XviG—>C

is defined as xy(g) = trace(p(g)), and is a class function. Now suppose p is an irreducible
representation of G, and consider the corresponding representation g : C[G|] — End (V) of the
group algebra. Then the center Z; acts by scalars on V; in other words, p(z) is a scalar matrix
for every z € Zg. The central character of p is defined by:

trace(p(z))
A Zg — G .
P oG z dim V
We can express the central character A, in terms of the character x,:

Z z(g
Xp geG
In what follows, we fix {p; : G — GL(V;)}/_; to be (representatives of the isomorphism classes
of) the finite-dimensional irreducible representations of G. The characters {xyv.} define an (or-

thonormal) basis of the set of class functions.
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2. TWO-CLASS FUNCTIONS

Consider the set {(x,y) € G x G | [x,y] = 1} consisting of pairs of commuting elements of G.
The group G acts on this space by simultaneous conjugation, and functions on the set of orbits
are called two-class functions:

Definition 2.1. The space of two-class functions on G is defined as:
2
28 =Cl{(y) €6 x G| [xy] =1}/G],
Observe that we have projections onto each coordinate:

{(xy) eGxGllxyl =1}/G

/ \
Co(x)

The fiber of 71y over the conjugacy class of x € G is identified with the set == 6 of conjugacy

QIO
QIO

classes of the centralizer C;(x) of x in G. Similarly, the fiber of 7, over the conjugacy class of
y € G is identified with the set of conjugacy classes of the centralizer of y. Thus, we have two
isomorphisms:
~. (2 ~ (2
Pr: @ Zeg(g) — Zé) P2 @ Zeg(g) — Zé)'
g 8<¢

between Zg ) and the direct sum of class functions on the centralizers Cg(g) as g runs over the

conjugacy classes of G.
Definition 2.2. Let M(G) be the quotient of the set

{(g,0) | g € G, 0 is an irreducible charater of the centralizer C5(g)}
by the action of G given by h>(g,0) = (hgh™!,z — o(h~1zh)).

We observe that every element m = (g,0) of M(G) defines an element z,, of ge8 Zc,(g), and,

moreover, the set {zy },,c () comprises a basis. Hence, we obtain two bases of the space of
two-class functions: {¢1(z,)} and {¢a2(zm)}-

Lemma 2.3. The change-of-basis matrix between the bases {¢1(zm)} and {¢p2(zm)} of Z(G2 ) is Qiven by:

1 - —
{p1(zm), p2(zm) } = CatolICa] g;; c(gx'g Vo' (g 1xg),
gxg'eCo(x')

where m = (x,0) and m' = (x, ") are elements of M(G).

(2)

Proof. There is a non-degenerate inner product on Z:” given by:
1 .
(a,B) = 1G] Z a(w,u)p(w, u)
(w,u)eG?

[w,u]=1
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Each of the bases {¢1(zm)} and {¢2(zm)} are orthonormal for this inner product. Hence the
entries of the change of basis matrix is given by:

(@1 () paz)) = o7 Y. b1(zm) (@, 1) (zm) (w, u)

| | (w,u)eG?

[w,u]=1
Using the fact that ¢1(z,) is supported on the fiber 71, (x), and the fact that it is invariant for
the conjugation action of G, the above expression reduces to:

LY i) ) = o Y () () (5, 1)

B |CG(X)‘ ueCe(x) |CG(x)| ueCs(x)

Note that ¢ (z,y(x, u)) = 0 unless u is conjugate to x’. We obtain:

1 - __
C vlgx $2(zmr ) (x, gx
|Cc(x)]|Ce(x)] gg (8x'8™ )p2(zp)(x,8x'g71)
gx'g71eCq(x)

Finally, ¢2(z,)(x,§x'¢7) = ¢o(zy) (g7 xg, x') = ¢’ (g xg), and the result follows. O

Remark. If G is abelian, then M(G) = G x G, and Lusztig’s non-abelian Fourier transform
reduces to the usual Fourier transform (see the Appendix below).

3. G-EQUIVARIANT VECTOR BUNDLES

Suppose G acts on a finite set X.

Definition 3.1. A G-equivariant vector bundle on X is the data of a finite-dimensional vector
space Vy for every x € X, together with an isomorphism:
Rgx: Ve — Vgx

forany ¢ € G and x € X, that satisfy ayj, g, 0 g x = &}, and ay,, = Id. We denote by Vecg (X) the
category of G-equivariant vector bundles on X.

If V is a G-equivariant vector bundle on X, then, for every x € X, the fiber V, carries an action
of the stabilizer Gy of x in G. If y = g-x, then G, = gGxg~! and the representation V, of G,
can be obtained from V, by conjugating by g. Thus, the category of G-equivariant vector bundles
is semisimple with simple objects parameterized by pairs (x,0) where x is a representative of a
G-orbit on X and ¢ is an irreducible character of the stablizier G, of x in G.

We consider the action of G on itself by conjugation. The set of irreducible objects of Vecg(G)
are parametrized by the set M(G) form above; we write V,, for the irreducible vector bundle
corresponding to m = (x,0) € M(G). Moreover, we have:

Lemma 3.2. The category Vec(G) is equivalent to the product of the categories Rep(C(g)), as g runs
over representatives of the conjugacy classes in G.
Next we consider the Grothendieck group Ko(Vecg(G)) of Vecg(G). Given an object V in Vecg (G)
and a pair (x,y) € G? with [x,y] = 1, we obtain thee following two functions:

(x,y) > trace(y, Vy), (x,y) — trace(x, V)

These give rise to isomorphisms:

1 : Ko(Veeg(G)) — 22, Py : Ko(Vec(G)) = Z2).
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The first is the same as the one arising from the equivalence of categories in Lemma 3.2, together
with the ismorphism ¢; from above.

Let [Viu] € Ko(Vecg(G)) be the class of the irreducible vector bundle corresponding to m =
(x,0) € M(G), and set vy := ¢, o 2([Viu]). The elements {om}merm(c) form a basis of
Dy & Zcg(g)- On the other hand, for every m’ € M(G), we have a central character

)\ml : @ ZCc(g) —C
8€g

Evaluating, we obtain:

Mwhfﬁﬂm@Mﬂ}

where {(x, ), (x/,0')} is as from the change-of-basis from above.

4. APPENDIX: THE (USUAL) FOURIER TRANSFORM FOR FINITE GROUPS

Definition 4.1. The Fourier transform of f € C[G] at a representation p : G — GL(V) of G is
defined as:

=Y _ f(a)p(a) € End(V)

aeG

Lemma 4.2. We have the following:

(1) The Fourier transform extends to an algebra homomorphism: F : C[G] — End(V)
(2) (The inverse Fourier transform.) For any f € C[G| and a € G:

1 & a2
f@=m§mmmm@www)

(3) (The Plancherel Formula.) For any f C[G]:
Y faglo) = 2 (Vi) Trace ( f(01)(p1) )
ae i=1

These all come down to the fact that the regular representation of G decomposes into a direct
sum of the representations Vj, each appearing dim(V;) times. Consequently, the sum

Z dim(V;)Trace (0;(g))

is equal to |G| if ¢ = e and zero 0therw1se.

4.1. The abelian case. Suppose G is a finite abelian group. Let G = Hom(G, S') be the set of
irreducible characters of G. Then the Fourier transform and its inverse is given by:

=) f(a)x(a)

aeG

Lemma 4.3. The inverse Fourier transform gives an algebra isomorphism:
F': C[G] — C[G]

8(a) wzg

where the source C[G] carries pointwise multiplication and C[G) carries convolution.
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Consider F ® F' : C[G] ® C[G] — C[G] ® C[G]. We have that:
1 _
60 @0 7= ), Py @p(b)b.
G| peG,beG

Thus, as a |G|? by |G|? matrix, the linear map F ® F' is given by:
1 _
{(@¢), (b 9)} = 159 (@)g(b)

4.2. The cyclic case. Let n > 1 be a positive integer and G = (x | x* = 1) be the cyclic group of
order n. Let x : G — C* be the character taking the generator x to the primitive n-th root of unity

{ = e’ . The dual group G of G is generated by x, and admits the presentation G = (x | x" = 1).
We identify the group algebra of G with the quotient C[t]/(#" — 1) of the polynomial algebra by
the ideal generated by #" — 1. Similarly, we identify the group algebra of G with C[s]/(s" — 1).
Under these identifications, the Fourier and inverse Fourier transforms are given by:

F:C[t]/(t"—1) — Cls]/(s" — 1) F':Cls]/(s" —1) — C[t]/(t" — 1)
n—1 n—1
$) = f6) = LA 26) = 80) =, T, 3@
= ]:
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