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IORDAN GANEV

1. Preliminaries

Let G be a finite group. The group algebra of G is the vector space C[G] = { f : G → C} of
functions from G to C, equipped with the convolution product:

C[G]⊗C[G]→ C[G]

f ⊗ g 7→ [x 7→ ∑
y∈G

f (xy−1)g(y)]

We write f ∗ g for the convolution of f , g ∈ C[G]. For x ∈ G, let ex ∈ C[G] denote the characteristic
function of x, so that {ex}x∈G forms a basis of C[G], and any f ∈ C[G] can be expressed as
f = ∑x∈G f (x)ex. Any representation ρ : G → GL(V) of G extends to a representation of the
group algebra C[G],

ρ̃ : C[G]→ End(V),

by setting ρ̃(ex) = ρ(x). This assignment establishes an equivalence between the category of
representations of G and the category of representations of the group algebra C[G]. Let ZG =
Z(C[G]) denote the center of the group algebra C[G]. One computes that ZG comprises the class
functions, i.e., functions constant on conjugacy classes of G:

ZG = { f ∈ C[G] | f (g) = f (xgx−1) for all g, x ∈ G}.

We use the notation G
G for the set of conjugacy classes of G, so that, as a vector spaces, ZG is the

space C
[G

G

]
of functions on G

G . A source of class functions is the characters of finite-dimensional
representations. Specifically, if ρ : G → GL(V) is a finite-dimensional representation of G, the
character

χV : G → C

is defined as χV(g) = trace(ρ(g)), and is a class function. Now suppose ρ is an irreducible
representation of G, and consider the corresponding representation ρ̃ : C[G] → End(V) of the
group algebra. Then the center ZG acts by scalars on V; in other words, ρ̃(z) is a scalar matrix
for every z ∈ ZG. The central character of ρ is defined by:

λρ : ZG → C; z 7→ trace(ρ̃(z))
dim V

.

We can express the central character λρ in terms of the character χρ:

λρ(z) =
1

χρ(1)
∑
g∈G

z(g)χρ(g).

In what follows, we fix {ρi : G → GL(Vi)}r
i=1 to be (representatives of the isomorphism classes

of) the finite-dimensional irreducible representations of G. The characters {χVi} define an (or-
thonormal) basis of the set of class functions.
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2. Two-class functions

Consider the set {(x, y) ∈ G × G | [x, y] = 1} consisting of pairs of commuting elements of G.
The group G acts on this space by simultaneous conjugation, and functions on the set of orbits
are called two-class functions:

Definition 2.1. The space of two-class functions on G is defined as:

Z(2)
G = C [{(x, y) ∈ G× G | [x, y] = 1}/G] ,

Observe that we have projections onto each coordinate:

{(x, y) ∈ G× G | [x, y] = 1}/G
π2

))

π1

uuG
G

G
G

The fiber of π1 over the conjugacy class of x ∈ G is identified with the set CG(x)
CG(x) of conjugacy

classes of the centralizer CG(x) of x in G. Similarly, the fiber of π2 over the conjugacy class of
y ∈ G is identified with the set of conjugacy classes of the centralizer of y. Thus, we have two
isomorphisms:

φ1 :
⊕
g∈ G

G

ZCG(g)
∼−→ Z(2)

G φ2 :
⊕
g∈ G

G

ZCG(g)
∼−→ Z(2)

G ,

between Z(2)
G and the direct sum of class functions on the centralizers CG(g) as g runs over the

conjugacy classes of G.

Definition 2.2. LetM(G) be the quotient of the set

{(g, σ) | g ∈ G, σ is an irreducible charater of the centralizer CG(g)}

by the action of G given by h . (g, σ) = (hgh−1, z 7→ σ(h−1zh)).

We observe that every element m = (g, σ) of M(G) defines an element zm of
⊕

g∈ G
G

ZCG(g), and,
moreover, the set {zm}m∈M(G) comprises a basis. Hence, we obtain two bases of the space of
two-class functions: {φ1(zm)} and {φ2(zm)}.

Lemma 2.3. The change-of-basis matrix between the bases {φ1(zm)} and {φ2(zm)} of Z(2)
G is given by:

{φ1(zm), φ2(zm′)} =
1

|CG(x)||CG(x′)| ∑
g∈G

gxg−1∈CG(x′)

σ(gx′g−1)σ′(g−1xg),

where m = (x, σ) and m′ = (x′, σ′) are elements ofM(G).

Proof. There is a non-degenerate inner product on Z(2)
G given by:

〈α, β〉 = 1
|G| ∑

(w,u)∈G2

[w,u]=1

α(w, u)β(w, u)
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Each of the bases {φ1(zm)} and {φ2(zm)} are orthonormal for this inner product. Hence the
entries of the change of basis matrix is given by:

〈φ1(zm), φ2(zm′)〉 =
1
|G| ∑

(w,u)∈G2

[w,u]=1

φ1(zm)(w, u)φ2(zm′)(w, u)

Using the fact that φ1(zm) is supported on the fiber π−1
1 (x), and the fact that it is invariant for

the conjugation action of G, the above expression reduces to:

=
1

|CG(x)| ∑
u∈CG(x)

φ1(zm)(x, u)φ2(zm′)(x, u) =
1

|CG(x)| ∑
u∈CG(x)

σ(u)φ2(zm′)(x, u)

Note that φ2(zm′(x, u)) = 0 unless u is conjugate to x′. We obtain:

=
1

|CG(x)||CG(x′)| ∑
g∈G

gx′g−1∈CG(x)

σ(gx′g−1)φ2(zm′)(x, gx′g−1)

Finally, φ2(zm′)(x, gx′g−1) = φ2(zm′)(g−1xg, x′) = σ′(g−1xg), and the result follows. �

Remark. If G is abelian, then M(G) = G × Ĝ, and Lusztig’s non-abelian Fourier transform
reduces to the usual Fourier transform (see the Appendix below).

3. G-equivariant vector bundles

Suppose G acts on a finite set X.

Definition 3.1. A G-equivariant vector bundle on X is the data of a finite-dimensional vector
space Vx for every x ∈ X, together with an isomorphism:

αg,x : Vx
∼−→ Vgx

for any g ∈ G and x ∈ X, that satisfy αh,gx ◦ αg,x = αhg,x and α1,x = Id. We denote by VecG(X) the
category of G-equivariant vector bundles on X.

If V is a G-equivariant vector bundle on X, then, for every x ∈ X, the fiber Vx carries an action
of the stabilizer Gx of x in G. If y = g · x, then Gy = gGxg−1 and the representation Vy of Gy
can be obtained from Vx by conjugating by g. Thus, the category of G-equivariant vector bundles
is semisimple with simple objects parameterized by pairs (x, σ) where x is a representative of a
G-orbit on X and σ is an irreducible character of the stablizier Gx of x in G.

We consider the action of G on itself by conjugation. The set of irreducible objects of VecG(G)
are parametrized by the set M(G) form above; we write Vm for the irreducible vector bundle
corresponding to m = (x, σ) ∈ M(G). Moreover, we have:

Lemma 3.2. The category VecG(G) is equivalent to the product of the categories Rep(CG(g)), as g runs
over representatives of the conjugacy classes in G.

Next we consider the Grothendieck group K0(VecG(G)) of VecG(G). Given an object V in VecG(G)
and a pair (x, y) ∈ G2 with [x, y] = 1, we obtain thee following two functions:

(x, y) 7→ trace(y, Vx), (x, y) 7→ trace(x, Vy)

These give rise to isomorphisms:

ψ1 : K0(VecG(G))→ Z(2)
G , ψ2 : K0(VecG(G))→ Z(2)

G .
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The first is the same as the one arising from the equivalence of categories in Lemma 3.2, together
with the ismorphism φ1 from above.

Let [Vm] ∈ K0(VecG(G)) be the class of the irreducible vector bundle corresponding to m =
(x, σ) ∈ M(G), and set vm := φ−1

2 ◦ ψ2([Vm]). The elements {vm}m∈M(G) form a basis of⊕
g∈ G

G
ZCG(g). On the other hand, for every m′ ∈ M(G), we have a central character

λm′ :
⊕
g∈ G

G

ZCG(g) → C

Evaluating, we obtain:

λm′(vm) =
|CG(x′)|

σ′(1)
{(x, σ), (x′, σ′)}

where {(x, σ), (x′, σ′)} is as from the change-of-basis from above.

4. Appendix: The (usual) Fourier transform for finite groups

Definition 4.1. The Fourier transform of f ∈ C[G] at a representation ρ : G → GL(V) of G is
defined as:

f̂ (ρ) = ∑
a∈G

f (a)ρ(a) ∈ End(V)

Lemma 4.2. We have the following:

(1) The Fourier transform extends to an algebra homomorphism: F : C[G]→ End(V)
(2) (The inverse Fourier transform.) For any f ∈ C[G] and a ∈ G:

f (a) =
1
|G|

r

∑
i=1

dim(Vi)Trace
(

ρi(a−1) f̂ (ρi)
)

(3) (The Plancherel Formula.) For any f , g ∈ C[G]:

∑
a∈G

f (a−1)g(a) =
1
|G|

r

∑
i=1

dim(Vi)Trace
(

f̂ (ρi)ĝ(ρi)
)

These all come down to the fact that the regular representation of G decomposes into a direct
sum of the representations Vi, each appearing dim(Vi) times. Consequently, the sum

r

∑
i=1

dim(Vi)Trace (ρi(g))

is equal to |G| if g = e and zero otherwise.

4.1. The abelian case. Suppose G is a finite abelian group. Let Ĝ = Hom(G, S1) be the set of
irreducible characters of G. Then the Fourier transform and its inverse is given by:

f̂ (χ) = ∑
a∈G

f (a)χ(a)

Lemma 4.3. The inverse Fourier transform gives an algebra isomorphism:

F† : C[Ĝ]→ C[G]

g(a) =
1
|G| ∑

χ∈Ĝ

g(χ)χ(a)

where the source C[Ĝ] carries pointwise multiplication and C[G] carries convolution.
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Consider F⊗ F† : C[G]⊗C[Ĝ]→ C[Ĝ]⊗C[G]. We have that:

δa ⊗ δφ 7→
1
|G| ∑

ψ∈Ĝ,b∈G

ψ(a)ψ⊗ φ(b)b.

Thus, as a |G|2 by |G|2 matrix, the linear map F⊗ F† is given by:

{(a, φ), (b, ψ)} = 1
|G|ψ(a)φ(b)

4.2. The cyclic case. Let n ≥ 1 be a positive integer and G = 〈x | xn = 1〉 be the cyclic group of
order n. Let χ : G → C× be the character taking the generator x to the primitive n-th root of unity
ζ = e

2πi
n . The dual group Ĝ of G is generated by χ, and admits the presentation Ĝ = 〈χ | χn = 1〉.

We identify the group algebra of G with the quotient C[t]/(tn − 1) of the polynomial algebra by
the ideal generated by tn − 1. Similarly, we identify the group algebra of Ĝ with C[s]/(sn − 1).
Under these identifications, the Fourier and inverse Fourier transforms are given by:

F : C[t]/(tn − 1) −→ C[s]/(sn − 1) F† : C[s]/(sn − 1) −→ C[t]/(tn − 1)

f (t) 7→ f̂ (s) =
n−1

∑
k=0

f (ζn−k)sk g(s) 7→ ĝ(t) =
1
n

n−1

∑
j=0

g(ζ j)tj
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