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Abstract

A common phenomenon when quantizing at roots of unity is the appearance of sheaves of
Azumaya algebras on various moduli spaces. We focus on an instance of this phenomenon arising
from the study of quiver representations. We begin by recalling the definition of multiplicative
quiver varieties, which are constructed via Hamiltonian reduction along a group-valued moment
map, and their quantizations. We state several results, and describe the techniques used in the
proofs. Our methods are part of a general mechanism involving a version of quantum Hamil-
tonian reduction that relies on Lusztig’s quantum Frobenius homomorphism and the notion of
Poisson orders. This is joint work with D. Jordan and P. Safronov.

1 Introduction

These are lecture notes for a seminar given at the Kavli Institute for the Physics and Mathematics
of the Universe in June 2019. They are based on joint work with David Jordan and Pavel Safronov
[GJS19|. The talk consists of two parts. In the first part, I'll speak briefly about quivers and
quiver representations, and about Azumaya algebras. In the second part, I'll formulate certain
quantizations, state the main result, and highlight the main ideas behind the proof.

2 Quivers and quiver varieties

2.1 Representations of quivers

Let Q = (V, E) be a quiver with fixed dimension vector d = (d,) € Z‘Z/O. For an edge e € F, write
a(e) € V and B(e) € V for the source and target of e, respectively:

Definition 2.1. A representation of () with dimension vector d is an element in

Nkm(@,d)::{})}knn((ﬂwa,cdmw).
eck

The group
Ga =[] GLa,

veV
acts on Mat(@,d) by changing the basis at each vertex

In other words, a representation is the assignment of a vector space of dimension d, to every
vertex v and a linear map from C%© to C%) for every edge e. The space Mat(Q, d) is sometimes
called the framed representation variety of @), the ‘framing’ referring to the fact that we’ve chosen
an identification with C% at every vertex. Two representations of @ with dimension vector d are
equivalent if and only if they lie in the same Gg-orbit.



Remark 2.2. We will often suppress the dimension vector from the notation, as all our constructions
are uniform in d, and will abbreviate Hom¢ (Cda@),@dﬁ(e)) by Mat(e).

2.2 Quiver varieties

Quiver varieties are various sort of quotients
Ma‘t(Qv d)/Gd

These lead to lots of interesting geometry and representation theory. One can take the quotient in
many ways, e.g. using GIT quotients and Hamiltonian reduction, and can also enhance the framed
representation variety before taking the quotient. In order the explain the quotient that motivates
our work, let me introduce a few more players.

e The dual quiver is defined as QV = (V, E), where we associate to each edge e € E a dual
edge ((e) < a(e) in EV.

e The doubled quiver is Q = (V,E = EUEY).

Note that Mat(Q) can be naturally identified with the cotangent bundle T*Mat (@), which is in turn
canonically a symplectic variety. From basic symplectic geometry, we know that there is a moment
map:

w: T*Mat(Q)) — Lie(Gq)®,

which is in some sense dual to the infinitesimal action map, i.e. the map of Lie algebras:
Lie(Gq) — {vector fields on Mat(Q,d)}.
The inifinitesimal action map extends to an algebra homomorphism
U(Lie(Ga)) = Dyat(q)-

from the universal enveloping algebra of the Lie algebra of G4 to the algebra of differential operators
on Mat(Q).

2.3 Multiplicative quiver varieties and their ¢g-deformation

We’ll be interested in a multiplicative version of these maps. There is a group-valued moment map

it : Mat(Q)° — Ggq
from a certain open subset of Mat(Q) to the group G4q. There is a Poisson structure on this open
subset, which one can think of as a degeneration of the symplectic structure on the cotangent bundle.
Instead of extending to an algebra homomorphism from the universal enveloping algebra, one can
from a g-deformation:

pg : Og(Ga) — Dy(Mat(Q))

from a certain quantum coordinate algebra of G4, known as the reflection equation algebra, to an
algebra of ¢-difference operators on Mat(Q).



e [Crawely-Boevey and Shaw 2006, [CS06]]

GIT Hamiltonian reduction along /i ~ the multiplicative quiver variety Mg

e [Jordan 2014, [Jor14]|

Quantum Hamiltonian reduction along 4

~ the quantum multiplicative quiver variety Oq(Mg)

e |G, Jordan, and Safronov 2019, |[GJS19)]

For ¢ a primitive root of unity, the Azumaya property of D, together with Frobenius GIT
Hamiltonian reduction

~ an Azumaya algebra A on the multiplicative quiver variety Mg whose global
sections are (approximately) the quantum multiplicative quiver variety Oy(Mg)

As we will explain shortly, the Azumaya property amounts to saying that the fiber of A over any
point in the multiplicative quiver vareity is a matrix algebra.

3 Azumaya algebras

Let A is any algebra over C and let Z = Z(A) be its center. We can think of A as defining a sheaf
of algebras over Spec(Z). Moreover, there is a central character map from the set of (isomorphism
classes of) irreducible modules for A to the maximal spectrum Specm(Z) of Z,

@ : Irrep(A) — Specm(Z).

(See the appendix for more details.) For a maximal ideal m of Z, the fiber is ®~1(m) is the set
of irreducible representations of the fiber A ® Z/m. Thus, the representation theory of A can be
reduced to the study of the spectrum of Z and the study of the representation theory of the various
fibers.

Definition 3.1. We say that A is an Azumaya algebra if A is a finitely-generated projective R-
module such that each fiber is a positive-dimensional matrix algebra. That is, for every m €
Specm(Z), there exists n > 0 and an isomorphism

A®yz Z/m >~ Mat,x,(C).

Key diagram:

Irrep(A) <————— &7} (m) < Irrep(Mat,x, (C)) = {pt}

Specm(Z) <—{m}



Thus, the central character map is a bijection, and we can think of the category of A-modules as a
twisted version of the category of Z-modules.

Remark 3.2. We make the following remarks:

1. This bijection extends to an equivalence of categories if and only if A ~ Endg(P) for a finitely-
generated projective generator P of R-mod. These are the ‘Morita trivial’ algebras, whereas
Azumaya algebras.

2. The definitions extend easily to the case of a sheaf of algebras over a scheme over C. That
is, a sheaf of Azumaya algebras is one where all fibers over closed points are isomorphic to
matrix algebras.

3. One can make sense of Azumaya algebras over any commutative ring; we have simplified
definitions for expositional purposes.

Example 3.3. Let ¢ be a primitive ¢-th root of unity and consider the algebra
A=Cla™y™) /(yr = qy).

Show that the elements z¢ and 3 are central in A, and the center is isomorphic to Laurent polyno-
mials in z¢ and 3, i.e.
Z(A) ~ Clz™*, ™.

Moreover, show that the algebra A is Azumaya with fibers isomorphic to Matyy,(C).

4 Quantum multiplicative quiver varieties

I’ll assume some basic familiarity with quantum groups, and I’ll try to include reminders of relevant
facts along the way. Feel free to ask for more detail at any point. We begin with some notation:

e Let U,g be the quantized enveloping algebra of a reductive Lie algebra g over C. Here ¢ is any
nonzero complex number. For the experts, we take the Lusztig form of the quantum group.

e Let Rep,(G) b the category of locally finite-dimensional representations of Uyg. This is a
braided tensor category in an interesting way.

e For G = GLy, let R € End(CY ® C") be the R-matrix, which gives the braiding for CV with
itself as a representation of U,(gly ). For example, for N = 2, we have:

o o ow
Q
|
QI
—

e Let Ry; = 7o Ro7 where 7 € End(CY @ CV) is the flip-of-factors map.

Our aim is to define a quantum coordinate algebra O,(Mat(Q,d)) as an algebra in Rep,(Gq).
To this end, we first quantize Mat(M, N) as a representation of GLj; x GLy under left and right
matrix multiplication, and Mat(N, N) as a representation of GLy acting by conjugation.



Definition 4.1. Define an algebra O,(Mat(M, N)) as generated by the elements aé- fori=1,...,N,
and j =1,..., M subject to the following matrix relation:

(A®Idy)(Idy @ A)Roy = R(Idy @ A)(A @ Idy)

where we matrix Ry for CM appears on the left-hand side and the R-matrix for CV appears on
the right-hand side.

This defines an algebra in Rep,(GLy) X Rep,(GLys), known as the equivariant FRT algebra.

Example 4.2. In the case N = 1, we recover quantum M-space, generated by variables x; for
j=1,..., M subject to the relation:

Tjx; = qu;x; for j < .

Definition 4.3. Define an algebra O?E(Mat(N, N)) as generated by the elements aé for 4,5 =
1,..., N, subject to the following matrix relation:

R21(A ® IdN)R(IdN ® A) = (IdN &® A)Rgl (A &® IdN)R

where R is the R-matrix for CV.

This defines an algebra in Rep,(GLy), known as the reflection equation algebra.

Example 4.4. The reflection algebra O?E(Mat(Q,Q)) in the case N = 2 is generated by four
elements a, b, ¢, and d, with relations written explicitly as:

da = ad db = ¢*bd de = q 2%cd
cb=bc+ (1 —q?)(ad — d*) ba = ab + (1 — ¢ 2)bd ca=ac+ (¢ % —1)de

Definition 4.5. We define the following:

e Let Rep,(Gq) denote the external tensor product of the categories Rep,(GLy, ) over the vertices
v € V. The braiding on each of the tensor factors taken together induces the structure of a
braided tensor category on Rep,(Gq).

e For each edge e € E, set

O4(Mat(N, M)) if e is not a loop: e LI
O,(Mat(e)) =

RE Y .
O, (Mat(N, N)) if e is a loop: e = O

These are both algebras in the Rep,(Gq) where the action of U,(gly,) is trivial if v is not
incident with e.

o Let
Oy(Mat(Q,d)) = () Oy(Mat(e))

eck
denote the braided tensor product of the algebras O,(Mat(e)) in Rep,(Gq)-



In the definition, we invoke the following basic fact. If A and B are algebras in a braided tensor
category (C,®,0), then their tensor product A ® B carries the natural structure of an algebra with
multiplication given by:

A9BoA9BZY Ao Ao Bo B ™" A B.

To be precise, the definition of Oy(Mat(Q,d)) requires a choice of ordering of the edges of Q.
However, the resulting algebra structure is independent of the chosen ordering.

We are also interested in quantizing the group-valued moment map

fi: Mat(Q)° — Ga

In the additive setting, the right thing to do is to regard Mat(Q) as the cotangent bundle to Mat(Q)
and quantize to differential operators. In the current multiplicative setting, we instead consider an
algebra of g-difference operators.

Hq : Og(Ga) = Dg(Mat(Q))

Here OFF(Gq) is the (usual, unbraided) tensor product of the algebras OFF(0,4(GLg,)), where
ORE(04(GLg,)) is the localization of OFF(O4(Mat(dy, dy))) at the quantum determinant det,. The
algebra D,(Mat(Q)) is a certain smash product between Oy(Mat(Q)) and O,(Mat(Q"), analogous
to the construction of differential operators on a vector space V as the smash product of functions
on V with functions on the dual V*. We refer to the appendix for the precise relations.

Example 4.6. The easiest example is
D,(Mat(e—9)) = C(z,8)/ (0 = ¢*20 + 1),

which is manifestly a ¢-deformation of the Weyl algebra on the affine line. The action on the
polynomial algebra C[t] as g-difference operators is given by:

f@®t) — f(t)

- f(E)=1f(¢ o-f(t) =
v 50 =t (0), fl = S
Technically, we must invert the element o = 1 + (¢?> — 1)x0, which has the following nice ¢-
commutation relations:
ar = ¢*za, ad = ¢ 20a.

Also, if f € C[t] is homogeneous of degree n, then a- f(t) = ¢*" f(t). Thus, « is a grading operator.

4.1 Statement of the main result

Theorem 4.7 (G., Jordan, Safronov |GJS19|). Fixz q to be a primitive £-th root of unity, where
£>1 is odd.

1. There is a commutative diagram of algebra homomorphisms:

ORE(Gy) Ha Dy(Mat(Q))
O(Ga) i O(Mat(Q))

where the vertical maps are central embeddings.



2. The algebra Dy(Mat(Q)) is Azumaya over the inverse image under fi of the product of the big
Bruhat cells in Gq.

3. For any component-wise scalar matriz & € Gq and any character 6 : Gq — C*, there is a pro-
cedure of quantum Hamiltonian reduction that produces from Dy(Mat(Q)) a sheaf of Azumaya
algebras on the (stable) mutliplicative quiver variety corresponding to the data (Q,d,&,0).

5 Techniques of the proof

5.1 Lusztig’s quantum Frobenius

One technique we use is Lusztig’s quantum Frobenius map. Let ¢ be a primitive ¢-th root of unity,
where ¢ > 1 is odd, and let g be a finite-dimensional reductive Lie algebra. Then there is a ‘short
exact sequence of Hopf algebras’:

Ugg — U;“Sg LN Ug

where u4g is the small quantum group (a finite-dimensional Hopf algebra), U;J“Sg is Lusztig’s quan-
tum group at the root of unity ¢ (that is, the version with divided powers), and Ug is the classical
enveloping algebra of g. The statement that this is a ‘short exact sequence of Hopf algebras’ means
that the small quantum group includes into the Lusztig quantum group, and the quotient of the
latter by the two-sided ideal generated by the augmentation ideal of the former is the classical
enveloping algebra. The quotient map Fr is known as Lusztig’s quantum Frobenius morphism, and
leads to functors:
Fr, : Rep,(G) — Rep(G)

Fr* : Rep(G) — Rep,(G)

where G is an algebraic group with Lie algebra g, Rep(G) denotes the category of locally finite
Ug-modules (equivalently, the category of representations of (), and Rep,(G) denotes the category
of locally finite Uzg-modules (as above). The functor Fr, amounts to taking invariants for the
small quantum group. A key result is that the functor Fr* is a braided tensor functor. This result,
together with some direct computations with generators and relations implies the first assertion of
our main result.

5.2 Poisson orders

Definition 5.1. A Poisson order is the following data:

e A commutative Poisson algebra Z.

e A central embedding of algebras Z < A such that the algebra A is finitely generated as a
Z-module.

e A linear map
D :Z — Derv(A)

from Z to the space of derivations of A such that D(z1)(z2) = {z1, 22} for any 21 and 2z in Z.



Thus, a Poisson order is an extension of the usual action of Z on itself by derivations to an action
of the (possibly non-commutative) algebra A by derivations. These arise naturally when quantizing
at a root of unity.

Example 5.2. Let ¢ be an ¢-th root of unity (non necessarily primitive). Let

A =C(z,y)/(yx = qry)

be the quantum plane. The elements z¢ and 3’ are central in A, and generate a central algebra
isomorphic to the algebra of polynomials in ¢ and y¢, so set Z = Clx ¢ E] Endow Z with a Poisson
bracket determined by {xz, 3} = fz’y’. The following map makes thls data into a Poisson order:

Z — Derv(A)

N z—0 ‘0 x> —ayt
T
yb—>x£y Y y+—0

The key result we need about Poisson orders is the following;:

Theorem 5.3 (Brown and Gordon 2003 [BGO03|). Suppose (A, Z, D) is a Poisson order and X =
Spec(Z) is a smooth variety. Let L C X be a symplectic leaf. Let for any two points p and p’' of L,
there is an isomorphism of algebras:

ARz Zlp = Ay Z)y.

In other words, if we regard A as defining a coherent sheaf on X = Spec(Z), then all fibers over
a given symplectic leaf are isomorphic as algebras.

Let Gg € Gq = [,y GLg, be the product of the big Bruhat cells.

Theorem 5.4 (G.-Jordan-Safronov |GJS19]). The inverse image i~ '(G°) C Mat(Q) is an open
symplectic leaf of Mat(Q)°.

In our paper, we show by direct computation that D,(Mat(Q)) is Azumaya over the point 0 in
Mat(Q), which lies in the inverse image of the G3. Therefore, D,(Mat(Q)) is Azumaya over all of
~—1 o
p(G°).

5.3 Construction of the sheaf

We now explain the construction of the sheaf of Azumaya algebras on the multiplicative quiver
variety.

Fix (&,)vev € (C*)Y such that [], & = 1 and consider the corresponding element ¢ = (£,1dg,) €
Ga. By abuse of notation, we use the same symbol to denote the corresponding map ¢ : O(Gy) — C.
Fix a lift £ of the map £ to Oy(Gq), so that we have a commutative diagram:

\/

Fix a character §: Gg — C*. Denote by Cy € Rep(Gq) the corresponding one-dimensional repre-
sentation.



Definition 5.5. The multiplicative quiver variety is the GIT Hamiltonian reduction
) Ga
M(@Q,d.,0) = Mi(Q)° // Ga = ™ (€) / Ga = Proj (EB oL €) ® Cem) .
m=0

Let /1(€)?7% denote the semi-stable locus of the fiber /i with respect to 6, and let ji(£)?~ C fu(£)7—
denote the stable locus. The multiplicative quiver variety i~'(¢) /9 (G4 may be identified with the

quotient of the open subset of fi~1(¢) of #-semistable points of i~1(£) by a certain equivalence
relation. In particular, we obtain a surjective morphism 7 : 7=1(£)9™% — a71(¢) /0 G, which fits

into a commutative diagram:

u(E)’ (&) i(€)

l,rs lw

MS(Qa da 5’ ‘9)% M(Qu d7 5’ 9)

where 7° is the restriction of 7 to the stable loci, and M?*(Q,d,&,0) is the image of 7° inside
M(Q,d, &, 0), which is known as the stable multiplicative quiver variety.

Now, observe that the fiber 771(¢) is an affine variety, given as the spectrum of the algebra

O(Mat(Q)) ®o(i,) Ce, where Cq is the one-dimensional representation of O(Gq) determined by .

Thus, Dq(Mat(Q)) ®0,(G,) Cg defines a sheaf of algebras 95 on i~ 1(€). Let 959 be the restriction
of 2% to the stable locus i~ (€)?~ of the fiber i (¢).

Definition 5.6. Define a sheaf A on the stable multiplicative quiver variety as follows:

A= )

Standard Hamiltonian reduction arguments show that this is a sheaf of algebras. Note that £ is
contained in G € Gq, the product of the big Bruhat cells in G4. Hence, D,(Mat(Q)) is Azumaya
over i~1(¢). A fiber-wise Hamiltonian reduction procedure (similar to the one that appears in
[BEGO6 [VV10]) ensures that the fibers of A are also matrix algebras, and hence A is an Azumaya
algebra.



APPENDIX

6 The central character map

Let A be any ring and let Z be its center. We define the central character map
® : Irred(A) — Specm(Z)

from the set Irred(A) of isomorphism classes of nonzero irreducible representations of A (i.e. simple
A-modules) to the maximal spectrum of Z (i.e. maximal ideals of Z). To this end, let M be an
irreducible A-module. Then the algebra of A-linear endomorphisms End 4 (M) is a division ring.
Indeed, the kernel and image of any A-linear map f : M — M is an A-submodule of M, so either f
is zero, or f is invertible. The action of Z on M is A-linear, so we have an algebra homomorphism
p:Z — Enda(M). The image of this map is a field, and we set ®(M) = ker(p).

7 Azumaya algebras in general

Let R be a commutative ring.

Definition 7.1. For an R-algebra A, we say that:

1. A is a Morita trivial R-algebra if there is an equivalence of categories A-mod ~ R-mod.

2. Ais a Morita invertible R-algebra if there exists an R-algebra B such that A®pr B is a Morita
trivial R-algebra.

We say that an R-module M is a generator of R-mod if Hompg(N, M) # 0 for any R-module N.

Proposition 7.2. Let A be an R-algebra.

1. A is Morita trivial if and only if A is isomorphic to Endgr(P) where P is a finitely generated
projective R-module that is a generator of R-mod.

2. A is Morita invertible if and only if A is a finitely generated projective R-module that generates
R-mod, and the following map is an isomorphism

A®p AP — Endg(A)

a®b— [r — axb|.

The collection of Morita invertible R-algebras forms the Brauer group of R. These definitions
extend easily to notions of sheaves of Azumaya algebras over general schemes.

Example 7.3. The quaternions H are Azumuaya over the reals R.

Example 7.4. Let k be a field of characteristic p > 0. The Weyl algebra of the affine line over k
is defined as

DA}C = k(w,8>/([8,x] = 1)7

and it is Azumaya over its center k[zP, OP].

10



8 The algebras O,(Mat(Q)) and Z,(Mat(Q))

The following discussion follows [Jorl4, Section 4|. For positive integers ¢ < N and j < M, let
E! denote the elementary N x M matrix with 1 in the i-th row and j-th column. Let 5; be the
Kronecker delta symbol which evaluates to 1 if ¢ = j and 0. Define 6 : Z — {0,1} by 0(k) = 1 if
k > 0, and 0 otherwise.

The R-matrix on CV is defined as the following endomorphism of C¥ @ CV:
Ri=qY Ei®E+Y EoFE +(q-q¢")> EQE,
i i#j i>j
where ¢ and j range from 1 to N. This is the universal R-matrix for the Hopf algebra U,(gly) and
makes Rep(U,(gly)) into a braided tensor category. One can equivalently write R =3, ., R;’Z (El®
EY), where
RY = q°k6i67 + (q—q ") 0(i — )6,07.
We will also need the the endormophism of CY ® CV given by Ry := 7 o Ror, where 7 is the flip
of factors on CV @ CV. As a matrix, Ry; is given by Dokl R;’Z(Ef; ® E}).

Example 8.1. In the case N = 2, we have

g 0 00 g 0 0 0
|0 1 00 001 g—¢t O
B=1lg g—¢t 10> & Ra=15 4" | |

0 0 0 ¢ 00 0 q

Definition 8.2. We define the following:

1. For any edge e, let aé-(e) be formal symbols indexed by ¢ = 1,...,dq) and j = 1,...,dg(e).
We organize the a%(e) into a dy(e) X dg(e) matrix:

A= Za?(e)E{
17]

2. For any edge e and vertex v, we define the following matrices:

A®Y = A°®1dg, and AV :=1dg, ® A°.
3. For v € V, abbreviate by R” the R-matrix on C%. For v, w € V, define the matrix R*" as:

R RY ifU:w’
Idg, a4, if v#w
We have the following reformulation of Definitions and ?77.

Proposition 8.3. The algebra Oy(Mat(Q,d)) is generated by the elements a%(e) foree E, i =
L. dae), and j =1,...,dg() subject to the following relations.

. v w
1. For a non-loop edge e from v to w, i.c. e——e:

RVAVEASY — Ae,vAw,eRsul.
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2. For a loop edge at v, i.e. e O:
RglAe,vRvAv,e — Av,eRé)lAe,vRv'
3. For distinct edges e and f:

Afa(e) pole).B() gB(fe — pale)a(f) ga(f)e ( R&(f)ﬁ(e)) 1 AB(e).] pBe).A()

Remark 8.4. The single edge relations in parts (1) and (2) of the proposition above are captured
by the following single formula:

(Ra(e),ﬁ(e))71Ra(e)Aa(e),eRgél(€)n3(€) Ae,ﬁ(e)Ra(e),ﬁ(e) — Rgl(e)vﬁ(e)Ae,a(e) Ra(e),ﬁ(e)Aﬁ(e),eRzﬁl(e) (Rgl(e)vg(e))fl.

The two-edge cases only lead to non-trivial relations only if e and f are incident, i.e. if {a(e), B(e)}N

{a(£), B(f)} # 0.

Recall the dual quiver QY and the doubled quiver Q. Thus, we have algebras O ,(Mat(QV,d))
and Oy(Mat(Q,d)). Set €2 := Do E; ® E}.

Definition 8.5. Define an algebra D (Mat(Q,d)) as generated by the elements aé (e) and 8{ (e)
forec E,i=1,...,dye), and j = 1,...,dg() subject to the following relations.

1. For a fixed edge e, the aé.(e) generate a subalgebra ismorphic to O,(Mat(Q, d)), while the 8;(6)
generate a subalgebra ismorphic to Oy(Mat(QV,d)) under the identification 8;-(6) “ aé(ev).

2. For distinct edges e and f, the aé-(e) and 9 (f) satisfy the same relations as do aé- (e) and
af(fY) in the algebra Oy (Mat(Q,d)).

)
3. For a fixed edge e, the az-(e) and OF (e) satisfy the relation:

(a) D" (R")"! A®Y = AW RwDwe 4 O if e is a non-loop edge from v to w, i.c. e—se.

(b) Ry, DYRVAY¢ = A"¢RY D% (RY,)™" if e is a loop at v, i.c. ¢ 0.

The algebra D, (Mat(Q, d)) can be interpreted as a smash product of O,(Mat(Q, d)) and O,(Mat(Q",d)),
and has a realization as difference operators on Mat(Q). The algebra D,(Mat(Q),d) we are inter-
ested in is actually a localization of D (Mat(Q),d) at certain Euler operators; we omit discussion
of this localization here and refer instead to |Jorl4, Section 6].
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