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1 Derived categories

Let A be an abelian category. This category embeds inside C(A), the category of complexes in A.
Our goal will be, in essence, to upgrade our thinking from A to C(A). As a category, C(A) has a
few problems and so we will need to tweak and improve it into the derived category D(A). Though
the construction is technical, there are a lot of reasons it is worthwhile:

• Derived functors like Tori, and Exti require us to take projective or injective resolutions of
objects, apply a functor to whole complex, and then take ith cohomology. Thus they pass
through C(A). It is more natural to think of derived functors on the level of complexes.

• Passing back to A by taking ith cohomology results in a loss of information. It would be nice
to be able to keep this information and stay in C(A).

• Composing derived functions is hard in general. Computing RiG(RjF (X)) requires a spectral
sequence. In the derived category, our goal is a formula like RF ◦RG = R(F ◦G).

• Many operations on sheaves make more sense or can only be properly formulated on the level
of complexes. For example, Grothendieck’s 6 functor formalism, Riemann-Hilbert, and many
operations on D-modules.

We now work towards defining D(A).

Definition. Let A be an abelian category. Define the category of chain complexes C(A) with

objects: {Xi, di}i∈Z, di : Xi → Xi+1, such that di+1 ◦ di = 0,
morphisms: f• : X• → Y • such that the following diagram commutes

Xi
diX //

f i

��

Xi+1

f i+1

��
Y i

di+1
Y // Y i+1.

The problem with this category is that it is too “fine” in the sense that functors on this category
distinguish between different resolutions of the same object. In order to fix this, we want to turn
quasi-isomorphism into isomorphisms. A quasi-isomorphism is a chain map

f : X• −→ Y •

which induces isomorphism on cohomology

H i(f) : H i(X•)
∼−→ H i(Y •).
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Doing this will allow us to have our cake and eat it too. We can live in the world of chain complexes
without losing information by taking cohomology, but we can still consider different resolutions of
the same object equivalent.

In order to formally invert the set of quasi-isomorphisms in the category, we have to localize
a category similar to how one might localize a ring in commutative algebra. The complication,
however, is that the hom sets are not commutative. To localize in a non-commutative setting, the
hom sets must satisfy a so-called Ore condition. That is, if S ⊂ A is a multiplicative set and we
wish to multiply a1s

−1
1 and a2s

−1
2 , then we need to move the a2 past the s−11 . Hence, we need to

require that there exist an s′ ∈ S and an a′ ∈ A such that

(a1s
−1
1 )(a2s

−1
2 ) = a1a

′s′−1s2.

Our problem is that HomC(A)(X•, Y •) need not satisfy this condition. Thus we move to the
homotopy category which does.

Definition. Let f, g ∈ Hom(X•, Y •). Then f is null-homotopic, denoted f ∼ 0, if there exists a
map sn : Xn → Y n−1 such that f = sdX + dY s. That is, in this diagram

. . . // Xn−1

fn−1

��

dn−1
X // Xn

sn

{{xx
xx

xx
xx

x

dnX //

fn

��

Xn+1

sn+1

{{xx
xx

xx
xx

x
//

fn+1

��

. . .

. . . // Y n−1
dn−1
Y // Y n

dnY // Y n+1 // . . .

the vertical arrow is the sum of the red and green path. In this case, we call s a chain homotopy.
We say f is homotopic to g if f − g ∼ 0.

Using this equivalence relation, we define the homotopy category to be a modified C(A) where
morphisms are defined up to homotopy equivalence.

Definition. The homotopy category K(A) is defined with

objects: {X•} = Ob(C(A)),
morphisms: HomC(A)(X•, Y •)/ ∼.

Now we can define the derived category D(A). Very roughly, “D(A) = S−1K(A)” where S is the
set of quasi-isomorphisms.

Definition. The derived category D(A) is defined with

objects: {X•} = Ob(C(A)),
morphisms: fs−1 : X• → Y • is a diagram in K(A) of the

form
[
X• Z•

soo o/ o/ o/
f // Y •

]
, where s is a quasi-

isomorphism, up to equivalence ≈.

We say two diagrams are equivalent[
X• Z•1

s1oo o/ o/ o/
f1 // Y •

]
≈

[
X• Z•2

s2oo o/ o/ o/
f2 // Y •

]
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if there exists Z•3 and t1, t2 quasi-isomorphisms, such that the following diagram commutes

Z•1
s1

��
�?

�?
�?

�? f1

��?
??

??
??

?

X Z•3

t1

OO
O�
O�
O�

t2
�� �O
�O
�O

Y

Z•2

s2

__
_�

_�
_�

_� f2

??��������
.

To compose two such morphisms
[
X• A•

soo o/ o/ o/
f // Y •

]
and

[
Y • B•

too o/ o/ o/
g // Z•

]
, one finds

C•, t′, f ′ such the following diagram commutes

C•

t′

}} }=
}=

}=
}= f ′

!!CC
CC

CC
CC

A•

s

}}
}=

}=
}=

}= f

!!CC
CC

CC
CC

B•

t

}} }=
}=

}=
}=

}=
g

""DD
DD

DD
DD

X• Y • Z•.

The outer wedge represents the composite morphism.

Unfortunately, the category D(A) is, in general, not abelian. It is, however, triangulated. In
a triangulated category, we record a system of distinguished triangles which effectively remember
the exact sequences from C(A). We will not list the axioms of a triangulated category here, but
the most important consequence is that distinguished triangles still give rise, as did short exact
sequences in an abelian category, to long exact sequences under the application of a cohomological
functor such as H i. Thus, although we do not have short exact sequences, we retain their most
important consequences.

We can also define D+(A),D−(A),Db(A) which are derived categories of A constructed as above
but based on the full subcategories of C(A) with objects that are chain complexes bounded below,
above, and fully respectively.

2 Derived category of sheaves

Goals: introduce the 6 operations on the derived category Db(X) of sheaves on a topological space
X, the proper base change theorem, Verdier duality, and the derived category of constructible
complexes, Db

c(X). The upshot will be that the category Db
c(X) is closed under the 6 operations

and admits a duality.

Let X be a topological space. Let Shv(X) be the abelian category of sheaves of C-vector spaces
on X. Let D#(X) = D#(Shv(X)) where (# = b,+,−, ∅) depending on which bounds we impose
on the complexes.
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2.1 Internal Hom

The category Shv(X) has a left-exact internal hom functor defined as

Hom(F ,G)(U) = Hom(F|U ,G|U ).

Since the category Shv(X) has enough injectives, we can define a right derived functor

RHom : D(X)op ×D(X)→ D(X)

as follows.

We first define a functor C(X)op×C(X)→ C(X). From two complexes F•,G• ∈ C(X), we create
a double complex Hom(F i,Gj) and then take the associated total complex given by the diagonals
having constant degree deg = j−i. A chain map of the total complex is given by all of the boundary
maps going between two adjacent diagonals signed as necessary in order to assure d2 = 0. This
total complex is then the image of our functor. We can diagram this as follows,

...

��

...

��
. . . // Hom(F i,Gj−1)

nnnnnnnnnnnnnnnnnnnnnn

dY ∗

��

d∗X(−1)j−i

// Hom(F i−1,Gj−1)

ssssssssssssssssss

dY ∗

��

// . . .

. . . //

qqqqqqqqqqqqqqqqqq Hom(F i,Gj)

mmmmmmmmmmmmmmmmmm

��

d∗X(−1)j−i+1

// Hom(F i−1,Gj)

rrrrrrrrrrrrrrrrr

��

// . . .

deg = n− 1

rrrrrrrrrrrrrrrrr
deg = n

ppppppppppppppp
deg = n + 1

mmmmmmmmmmmmmmmmmm

.

Conveniently, this functor respects chain homotopies and thus descends to

H̃om : K(X)op ×K(X)→ K(X).

Now we want to induce a functor on the derived category. Briefly and intuitively, if we have a
functor F between homotopy categories and we want one on the level of derived categories, then
we need to apply F to a diagram such as[

X• Z•
soo o/ o/ o/

f // Y •
]

and have the resulting diagram be of the same form. Thus we would like F (s) to be a quasi-
isomorphism. Generally, this is not true, but it is true if we restrict to the full subcategory of
injective complexes. Fortunately, since our category has enough injectives, every complex is quasi-
isomorphic to an injective complex. Thus, we lose nothing in making such a restriction. So we have
a functor

K(X)op ×D(X)→ D(X)

defined by
F•,G• 7−→ H̃om(F•, I•)
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where I• is an injective complex chosen quasi-isomorphic to G•. Similar to the commutative case,
localization has a universal property which allows us to extend to denominators in the domain if
they are already mapped to something invertible in the target. Hence we induce

RHom : D(X)op ×D(X)→ D(X).

By imposing bounds on the total degree and noting the implied bounds on i and j we can also
get functors with a variety of bounds:

RHom : D−(X)op ×D+(X)→ D+(X),

RHom : D+(X)op ×D−(X)→ D−(X),

RHom : Db(X)op ×Db(X)→ Db(X).

Let F ,G be sheaves over X, i.e. complexes concentrated in degree 0. Taking homology gives the
traditional right-derived functors of Hom

Extn(F ,G) = Hn(RHom(F•,G•)).

2.2 Derived direct and inverse image functors

Let f : X → Y be a continuous function between topological spaces. We are interested in the sorts
of functors that f induces on the derived level. Many of them start with functors on the abelian
level. The direct image functor

f∗ : Shv(X)→ Shv(Y )

is defined by f∗F(V ) = F(f−1(V )). This is a left exact functor, and has a right derived functor

Rf∗ : Db(X)→ Db(Y ).

Explicitly, if F is a sheaf, then Rif∗F is the sheaf associated to the presheaf V 7→ H i(f−1(V ),F).
Stalks are computed using homology of preimages of neighborhoods.

Example. Let f be the inclusion of C \ {0} into C. The stalk over 0 of Rif∗(C) is H i(S1,C).
Explanation: the preimage under f of any sufficiently small neighborhood of the origin in C is a
punctured disk, which has the same cohomology as a circle.

The inverse image functor
f∗ : Shv(Y )→ Shv(X)

is defined1 by f∗F(U) = limV⊃f(U)F(V ). Note that f∗ behaves well with stalks: (f∗F)x = Ff(x).
Using the fact that a sequence of sheaves is exact if and only if it is exact on stalks, we conclude
that f∗ is an exact functor. Therefore, the functor f∗ descends to a functor on the derived category:

f∗ : Db(Y )→ Db(X).

Adjunction forumlas for F ∈ Db(Y ) and G ∈ Db(X):

Rf∗RHom•(f∗F•,G•) = RHom•(F•, Rf∗G•)

HomDb(X)(f
∗F•,G•) = HomDb(Y )(F•, Rf∗G•)

We also have the composition rule which helped motivate our discussion of derived categories.
1It is common to write f−1 for this functor and reserve f∗ for pullback of sheaves of modules or coherent sheaves.
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Proposition 1. If F : Shv(X) → Shv(Y ) and G : Shv(Y ) → Shv(Z) and F preserves injectives
(e.g. F = f∗) then

R(G ◦ F ) = RG ◦RF.

2.3 Derived direct image with compact supports

Define the direct image with compact supports functor as

f! : Shv(X)→ Shv(Y )

f!F(V ) = {s ∈ Γ(f−1(V ),F) | f |supp(s) : supp(s)→ V is proper}.
Observe that if f is a proper map, then f∗ = f!. The functor f! is left exact, and we can define its
derived functor

Rf! : Db(X)→ Db(Y ).

Example. Let f be the inclusion of C \ {0} into C. The stalk over 0 of Rif!(C) is the cohomology
with compact supports H i

c(D
◦,C) where D◦ is a punctured disk. By Poincaré duality, we have that

Rif!(CX)0 is equal to C if i = 1, 2 and 0 otherwise.

Why study the direct image with compact supports? There are many reasons; the ones I would
like to focus on are: the proper base change theorem and Verdier duality.

2.4 Proper base change theorem and the projection formula

Theorem 2 (Proper base change theorem). Suppose we have a Cartesian diagram

Z ×Y X
g′ //

f ′

��

X

f

��
Z

g // Y

Then g∗ ◦ f! = (f ′)! ◦ (g′)∗. Moreover, g∗ ◦Rf! = R(f ′)! ◦ (g′)∗

The following example illustrates that the above theorem does not hold if the direct image with
compact supports is replaced by the ordinary direct image functor.

Example. [3, Exercise 2.3.28] Let X be the unit circle in R2 with the point {(0, 1)} removed, i.e.
X = S1 \ {(0, 1)}. Let Y be the interval [−1, 1] and f : X → Y the projection onto the first
coordinate. Let Z = {0} and g : Z → Y the inclusion of the origin in the interval. Then, for any
sheaf F on X, g∗ ◦ f!(F) and (f ′)! ◦ (g′)∗(F) both compute the stalk of F at the point {(0,−1)}.
On the other hand, taking F = CX to be the constant sheaf, we have g∗ ◦ f∗(F)(CX) = C3 and
(f ′)∗ ◦ (g′)∗(CX) = C.

As foreshadowing, we ask the following question: Does there exist a version of the proper base
change theorem with ordinary direct images? The answer will be revealed in the section on Verdier
duality.

I also want to mention the projection formula at this point. Recall that the category Shv(X) has
a tensor product: F ⊗ G is the sheaf associated to the presheaf taking U to F(U) ⊗C G(U). The
category Shv(X) has enough flat objects, so there is a derived tensor product

−⊗L − : Db(X)×Db(X)→ Db(X).
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Theorem 3 (Projection formula). For any F• ∈ Db(X) and G• ∈ Db(Y ), we have

Rf!F• ⊗L G• ' Rf!(F• ⊗L f∗G•).

2.5 Verdier Duality

Theorem 4 (Verdier duality). If Rkf! = 0 for k >> 0 (i.e. the functor f! finite cohomological
dimension), then the functor Rf! has a right adjoint f !. More precisely, for F ∈ Db(X) and
G ∈ Db(Y ):

RHom•(Rf!F•,G•) = Rf∗RHom•(F•, f !G•)
HomDb(Y )(Rf!F•,G•) = HomDb(X)(F•, f !G•)

Henceforth assume all maps f satisfy the condition of the above theorem. Note that the functor
f ! is not the the derived functor of a functor on the abelian level. This illustrates a great advantage
to working with derived categories. The following result gives a more concrete sense of what f ! is
doing.

Proposition 5. Suppose f is smooth with smooth fibers of dimension d. Then f ! = f∗[2d].

We have the following version of the proper base change theorem:

Proposition 6. Suppose we have a Cartesian diagram

Z ×Y X
g′ //

f ′

��

X

f

��
Z

g // Y

Then g! ◦Rf∗ = R(f ′)∗ ◦ (g′)!.

Definition. Let aX : X → pt be the unique map from X to a point. The dualizing sheaf of X is
defined as

ωX = (aX)!C.
If F• ∈ Db(X), then define the ‘dual’ of F• as

DF• = RHom•(F•, ωX).

Properties:

• f !ωY = ωX .

• If X is smooth complex manifold, then

ωX = CX [2 dimC(X)].

(The shift in dimension is the ‘same’ as the shift in dimension that appears in Poincaré duality.
In fact, Verdier duality is a generalization of Poincaré duality.)

• The assignment D interchanges shrieks and stars, more precisely, for F• ∈ Db(X) and G• ∈
Db(Y ), we have:

f !(DG•) = D(f∗G•) Rf∗(DF•) = D(Rf!F•).

A problem with the assignment F 7→ DF is that it does not square to the identity, so is not a
proper duality. In the following section, we define a subcategory of Db(X) where D2 = Id.
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2.6 Derived category of constructible complexes

To motivate the derived category of constructible complexes, we state the following fact:

Fact: Local systems are not preserved by the functors Rf∗, Rf!, f
∗, f ! in general

We seek a subcategory of Db(X) that includes local systems and is closed under these operations.
The smallest such category (in some sense) is given in the following definition:

Definition. The (bounded) derived category of constructible complexes, denoted Db
c(X) is the full

subcategory of Db(X) consisting of objects F such that each cohomology sheaf Hi(F) is con-
structible.

The notion of a constructible sheaf was defined in the previous talk.

Theorem 7. The category Db
c(X) is closed under the 6 operations:

Rf∗, f
∗, Rf!, f

!, RHom•,⊗L.

Moreover, Db
c(X) is closed under D, and D squares to the identity on objects of Db

c(X).
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