Notes on equivariant sheaves and \mathcal{D} -modules

Iordan Ganev

Contents

1.	Equivariant Sheaves	1
2.	Some ring theory	5
3.	Equivariant \mathcal{D} -modules	8
References		12

This collection of expository notes emerged while working on the paper [BG19], and from conversations with D. Ben-Zvi, Sam Gunningham, D. Jordan, P. Safronov, T. Schedler, and others. References include [CG09, HTT07]. Unless specified otherwise, we work over \mathbb{C} .

1. Equivariant Sheaves

1.1. **General definitions.** Suppose a linear algebraic group *G* acts on a variety *X*. What is an equivariant sheaf on *X*? As motivation, we first give the definition of a *G*-equivariant vector bundle on *X*.

Definition 1.1. Suppose $p : E \to X$ be a vector bundle. We say that *E* is a *G*-equivariant vector bundle if there is an action of *G* on *E* such that the map *p* is equivariant, and the action is linear on fibers. In this case, the sheaf \mathcal{E} of sections of *E* is a *G*-equivariant sheaf.

To be explicit, for every $x \in X$, the action of $g \in G$ defines a linear isomorphism $\phi_{(g,x)} : E_{gx} \to E_x$ from the fiber of *E* over gx to the fiber over *x*. These isomorphisms fit into a smooth family, and satisfy the associativity condition $\phi_{(h,x)} \circ \phi_{(g,hx)} = \phi_{(gh,x)}$, for any $g, h \in G$ and $x \in X$.

Definition 1.1 generalizes to arbitrary sheaves as follows (c.f. [CG09, Section 5.1]). Let

$$a: G \times X \to X$$
 $p: G \times X \to X$

be the action and projection maps, let $p_{23} : G \times G \times X \to G \times X$ be the projection onto the second and third factors, and let $m : G \times G \to G$ be the multiplication map.

Definition 1.2. An *G*-equivariant sheaf on *X* is a pair (\mathcal{F}, Φ) , where \mathcal{F} is a quasicoherent sheaf on *X* and $\Phi : a^*\mathcal{F} \to p^*\mathcal{F}$ is an isomorphism subject to the condition that the following associativity equality holds:

$$p_{23}^*\Phi \circ (1 \times a)^*\Phi = (m \times 1)^*\Phi.$$

A morphism from $(\mathcal{F}, \Phi_{\mathcal{F}})$ to $(\mathcal{G}, \Phi_{\mathcal{G}})$ is a morphism of \mathcal{O}_X -modules $f : \mathcal{F} \to \mathcal{G}$ such that $p^* f \circ \Phi_{\mathcal{F}} = \Phi_{\mathcal{G}} \circ a^* f$. We denote the category of *G*-equivariant quasicoherent sheaves on *X* by $\mathsf{QCoh}_G(X)$.

This definition can be easily extended to include *G*-equivariant sheaves of \mathcal{O}_X -modules, rather than just quasicoherent sheaves; however, we will focus on the quasicoherent setting. To make sense of the associativity constraint, first observe that the following diagrams commute:

Consequently, the constraint asserts that the following diagram commutes:

$$(1 \times a)^* a^* \mathcal{F} = (m \times 1)^* a^* \mathcal{F} \xrightarrow{(m \times 1)^* \Phi} (m \times 1)^* p^* \mathcal{F} = p_{23}^* p^* \mathcal{F}$$

1.2. Hopf algebras. Definition **1.2** can be restated more algebraically in the case where *X* is affine. In order to do so, we recall some facts about Hopf algebras and their categories of representations. We refer the reader to, e.g., [Kas12] for more details.

Let *H* be a Hopf algebra. Then the category *H*-comod of *H*-comodules is a tensor category. Indeed, if *M* and *N* are *H*-comodules, then the coaction of *H* on the tensor product (of vector spaces) $M \otimes N$ is given by

$$M \otimes N \xrightarrow{\operatorname{coact} \otimes \operatorname{coact}} (H \otimes M) \otimes (H \otimes N) \xrightarrow{\sim} (H \otimes H) \otimes (M \otimes N) \xrightarrow{\mathsf{m} \otimes 1 \otimes 1} H \otimes (M \otimes N).$$

Given an algebra object A in the tensor category H-comod, we write A-mod_{H-comod} for the category of A-modules in the category H-comod. Let

$$a^{\#}: A \to H \boxtimes A \qquad p^{\#}: A \to H \boxtimes A$$

denote the coaction map and the inclusion of the second factor, respectively. We use the symbol ' \boxtimes ' to emphasize that we take the tensor product of abstract algebras, rather than the tensor product within the category of *H*-comodules. We have corresponding functors between categories of modules:

$$a^*:A\operatorname{-mod}
ightarrow Hoxtimes A\operatorname{-mod}:a_* \qquad p^*:A\operatorname{-mod}
ightarrow Hoxtimes A\operatorname{-mod}:p_*$$

Lemma 1.3. An object of A-mod_{H-comod} is equivalent to the data of an A-module M equipped with an isomorphism $a^*M \rightarrow p^*M$ satisfying an associativity condition analogous to the one in Definition 1.2 above.

Sketch of proof. First, suppose that *M* is an *A*-module in *H*-comodules. The fact that the action map $A \otimes M \to M$ is a map of *H*-comodules implies (and is in fact is equivalent

to) the commutativity of the following diagram, where $\beta : M \to H \boxtimes M$ is the coaction map:

In turn, the commutativity of this diagram implies that β is a map of *A*-modules, where $H \boxtimes M$ is identified with a_*p^*M . The adjunction (a^*, a_*) gives an identification:

$$\operatorname{Hom}_{A}(M, a_{*}p^{*}M) = \operatorname{Hom}_{H \boxtimes A}(a^{*}M, p^{*}M)$$

Hence, the coaction map β corresponds to a map

$$\Phi: a^*M \to p^*M.$$

We leave it as an exercise to show that Φ is an isomorphism and the coassociativity of the coaction of *H* on *M* recovers the associativity condition of Φ .

1.3. Affine algebraic groups. Let *G* be an affine algebraic group and let Rep(G) be the category of representations of *G*. Since *G* is a group, the coordinate algebra \mathcal{O}_G of *G* is a commutative Hopf algebra.

Lemma 1.4. *There is an equivalence of categories* $\operatorname{Rep}(G) = \mathcal{O}_G$ -comod.

Proof. There is a functor \mathcal{O}_G -comod $\to \operatorname{Rep}(G)$ is given by evaluation. The functor in the other direction is given as follows. Let $V \in \operatorname{Rep}(G)$, and fix $v \in V$. The *G*-orbit Gv is a finite dimensional subspace of *V*. Choosing a basis $\{e_i\}$ for this subspace and a dual basis $\{e^i\}$ for its dual, we define a coaction of \mathcal{O}_G on *V* by $\Delta(v) = [g \mapsto \langle e^i, gv \rangle] \otimes e_i$. \Box

Lemma 1.5. There is a fully-faithful functor

 $\mathit{H}\text{-}\mathsf{comod} \to \mathcal{U}\mathfrak{g}\text{-}\mathsf{mod}$

commuting with the forgetful functors to vector spaces.

Proof. There is a natural evaluation pairing $\kappa : \mathcal{O}_G \otimes \mathcal{U}\mathfrak{g} \to \mathbb{C}$ given by evaluation of matrix coefficients. Given an *H*-comodule *M*, define a $\mathcal{U}\mathfrak{g}$ -action on *M* via the following composition:

$$\mathcal{U}\mathfrak{g}\otimes M\stackrel{1\otimes \text{coact}}{\longrightarrow}\mathcal{U}\mathfrak{g}\otimes H\otimes M\stackrel{\kappa\otimes 1}{\longrightarrow}M.$$

Remark 1.6. The Hopf algebra \mathcal{O}_G is the Hopf dual of $\mathcal{U}\mathfrak{g}$, but $\mathcal{U}\mathfrak{g}$ is not the Hopf dual of \mathcal{O}_G . See [BG12, Section I.9] the other way around.

1.4. The affine case. Let X be an affine scheme, so that $X = \text{Spec}(\mathcal{O}_X)$ for a commutative algebra \mathcal{O}_X . The data of an action of G on X is equivalent to the data of a coaction of $H = \mathcal{O}_G$ on \mathcal{O}_X such that the multiplication map $\mathcal{O}_X \otimes \mathcal{O}_X \to \mathcal{O}_X$ is a map of *H*-comodules. As a consequence of Lemma 1.3, we have:

Proposition 1.7. The category of *G*-equivariant sheaves on *X* is equivalent to the category of \mathcal{O}_X -modules in the category of \mathcal{O}_G -comodules:

$$\operatorname{\mathsf{QCoh}}_G(X) \xrightarrow{\sim} \mathcal{O}_X\operatorname{\mathsf{-mod}}_{\mathcal{O}_G\operatorname{\mathsf{-comod}}}.$$

Remark 1.8. We comment on the non-commutative setting. Let $\mathcal{O}_q(G)$ be the quantum coordinate algebra of a reductive group *G*. This is a Hopf algebra, and so its category of comodules $\mathcal{O}_q(G)$ -comod carries the structure of a tensor category. An algebra object *A* in the category of $\mathcal{O}_q(G)$ -comodules can be regarded as a non-commutative *G*-variety, and the category of modules can be regarded as the category of equivariant sheaves on this (non-existent) non-commutative space. Backelin Kremnizter consider the particular case of the quantum flag variety [BKo6].

1.5. **Descent.** Alternatively, one can define the category of equivariant sheaves on X as the category of sheaves on the stack X/G via descent, noting the following facts.

Definition 1.9. The action groupoid $X \times_{X/G} X$ consists of triples (x, y, g) where $x, y \in X$ and g takes x to y. We have projection maps onto the first and second factor:

$$\pi_1: X \times_{X/G} X \to X \qquad \qquad \pi_2: X \times_{X/G} X \to X.$$

Similarly, we have $X \times_{X/G} X \times_{X/G} X$ with the projections $\pi_{ij} : X \times_{X/G} X \times_{X/G} X \rightarrow X \times_{X/G} X$ for $(ij) \in \{(12), (13), (23)\}$.

Definition 1.10. The category of sheaves on X/G has as objects pairs (\mathcal{F}, Ψ) , where \mathcal{F} is a quasicoherent sheaf on X and $\Psi : \pi_1^* \mathcal{F} \to \pi_2^* \mathcal{F}$ is an isomorphism of sheaves on $X \times_{X/G} X$ subject to the condition that the following associativity equality holds:

$$\pi_{23}^* \Psi \circ \pi_{12}^* \Psi = \pi_{13}^* \Psi.$$

A morphism between sheaves are defined in the obvious way.

To make sense of the associativity constraint, we use the fact that $\pi_{12}^*\pi_1^* = \pi_{13}^*\pi_1^*$, $\pi_{12}^*\pi_2^* = \pi_{23}^*\pi_1^*$, and $\pi_{13}^*\pi_2^* = \pi_{23}^*\pi_2^*$.

Lemma 1.11. The action groupoid $X \times_{X/G} X \rightrightarrows X$ is the same as $G \times X \rightrightarrows X$, where π_1 is identifies with p and π_2 is identified with a.

The proof of the above lemma is elementary: the isomorphism in question takes (x, y, g) to (g, x). Similarly, there is an isomorphism between $X \times_{X/G} X \times_{X/G} X$ and $G \times G \times X$ in which the projections $\pi_{ij} : X \times_{X/G} X \times_{X/G} X \to X \times_{X/G} X$ correspond to p_{23} when i = 1, j = 2; to $m \times 1$ when i = 1, j = 3; and to $1 \times a$ when i = 2, j = 3. The following lemma is now clear from definitions:

Lemma 1.12. There is an equivalence of categories between the category of *G*-equivariant sheaves on *X* and the category of sheaves on the action groupoid $X \times_{X/G} X$.

1.6. **Case of a torus.** We consider the case where G = T is a torus. Let $\Lambda = X^*(T)$ be the character lattice of T. Every character $\lambda \in \Lambda$ gives rise to an algebraic function z^{λ} on T, and we have that $z^{\lambda}z^{\mu} = z^{\lambda+\mu}$ for $\lambda, \mu \in \Lambda$. These functions span the algebra of functions on T, which can thus be identified with the group algebra of the lattice Λ :

$$\mathcal{O}_T = \mathbb{C}[\Lambda] = \mathbb{C}[z^\lambda \mid \lambda \in \Lambda].$$

The Hopf structure on \mathcal{O}_T is given by

$$\Delta(z^{\lambda}) = z^{\lambda} \otimes z^{\lambda}$$
 $\epsilon(z^{\lambda}) = 1$ $S(z^{\lambda}) = z^{-\lambda}$,

for any $\lambda \in \Lambda$.

Lemma 1.13. The category of \mathcal{O}_T -comodules is equivalent to the category of Λ -graded vector spaces.

Proof. Let *M* be an \mathcal{O}_T comodule with coaction map $\Delta : M \to \mathcal{O}_T \otimes M$. For $\lambda \in \Lambda$, define

$$M_{\lambda} = \{m \in M \mid \Delta(m) = z^{\lambda} \otimes m' \text{ for some } m' \in M\}.$$

It is clear that $M_{\lambda} \cap M_{\mu} = 0$ if $\lambda \neq \mu$, and the counit axiom implies that $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$. Conversely, given a graded vector space $V = \bigoplus_{\lambda \in \Lambda} V_{\lambda}$, define a coaction of \mathcal{O}_T on V by

$$\Delta: V \to \mathcal{O}_T \otimes V; \qquad v_\lambda \mapsto z^\lambda \otimes v_\lambda$$

for $v_{\lambda} \in V_{\lambda}$.

2. Some ring theory

In this section we switch gears and discuss some ring theory. Let *A* be an algebra over \mathbb{C} .

Definition 2.1. An *A*-ring is a ring *R* equipped with an homomorphism $\tau : A \to R$. We write τ_a for the image of $a \in A$.

We give some examples of *A*-rings.

- The algebra A is an A-ring with τ being the identity map.
- The ring (End_ℂ(*A*), ∘) of ℂ-linear endomorphisms of *A* with the operation of composition is an *A*-ring with

 $\tau: A \to \operatorname{End}_{\mathbb{C}}(A); \quad a \mapsto [\tau_a: b \mapsto ab].$

• The ring (End_ℂ(*A*), ∘^{op}) of ℂ-linear endomorphisms of *A* with the opposite multiplication is an *A*-ring with

$$\tau: A \to \operatorname{End}_{\mathbb{C}}(A); \qquad a \mapsto [\tau_a: b \mapsto ba].$$

 The algebra Diff(A) ⊆ End_C(A) of differential operators is the subalgebra of End_C(A) generated by the image of τ and by the derivations of A. Hence it is an A-ring.

The category *A*-bimod of *A*-bimodules is a tensor category under the tensor product $-\otimes_A -$.

Lemma 2.2. An A-ring R defines an algebra object in the category of A-bimodules. Consequently, R defines a monad on the category A-mod via $M \mapsto R \otimes_A M$.

Proof. The *A*-bimodule structure on an *A*-ring *R* is defined as follows: $a \otimes b \in A \otimes A$ takes $r \in R$ to the product $\tau_a \cdot r \cdot \tau_b$. The first statement follows from the fact that the multiplication on *R* factors through $R \otimes_A R \to R$, and this is a morphism of *A*-bimodules. For the second statement, the *A*-module structure on $R \otimes_A M$ comes from the remaining left *A*-action on the factor *R*. The multiplication on the monad comes from the fact the multiplication on *R* factors through $R \otimes_A R \to R$. The unit on the monad is given by $M \to R \otimes_A M$, $m \mapsto 1 \otimes m$.

Remark 2.3. The category of modules for the monad on *A*-mod defined by *R* is equivalent to *R*-mod.

We say that *R* is an *A*-algebra if *A* is commutative and the image of τ is central in *R*. In this case, the left and right actions of *A* on *R* coincide. Moreover, the category *A*-mod of *A*-modules is a tensor category under the relative tensor product $-\otimes_A -$, and *R* is an algebra object in this category.

2.1. *G***-actions.** Suppose a group G acts on A by algebra automorphisms, so we have a group homomorphism

$$\rho: G \to \operatorname{Aut}_{\operatorname{alg}}(A); \qquad g \mapsto \rho_g.$$

We see that *A* is an algebra object in the tensor category Rep(G), and make the following definition:

Definition 2.4. The category of *G*-equivariant *A*-modules is defined as the category of modules for *A* in Rep(G). Notation: *A*-mod_{Rep(G)}.

Definition 2.5. A *G*-equivariant *A*-ring is an *A*-ring *R* equipped with an action of *G* by algebra automorphisms in a way compatible with the action of *G* on *A*. More precisely, we have a group homomorphism

$$\bar{\rho}: G \to \operatorname{Aut}_{\operatorname{alg}}(R); \qquad g \mapsto \bar{\rho}_g$$

such that $\bar{\rho}_g(\tau_a) = \tau_{\rho_\sigma(a)}$, i.e. the following diagram commutes:

$$\begin{array}{c} G \times A \xrightarrow{\rho} A \\ \downarrow_{1 \times \tau} & \downarrow_{\tau} \\ G \times R \xrightarrow{\bar{\rho}} R \end{array}$$

Lemma 2.6. If *R* is a *G*-equivariant *A*-ring, then *R* defines a monad on *A*-mod_{Rep(G)} via $M \mapsto R \otimes_A M$.

Proof. We proceed in a way similar to the proof of Lemma 2.2 above. The coordinate-wise *G*-action on $R \otimes M$, given by $g \cdot (r \otimes m) = \overline{\rho}_g(r) \otimes (g \cdot m)$, descends to $R \otimes_A M$. Indeed, for any $a \in A$, we have:

$$g(r\tau_a \otimes m) = (\bar{\rho}_g(r\tau_a)) \otimes (g \cdot m) = \bar{\rho}_g(r)\tau_{\rho_g(a)} \otimes (g \cdot m),$$
 and

$$g(r \otimes am) = \bar{\rho}_g(r) \otimes (g \cdot am) = \bar{\rho}_g(r) \otimes (\rho_g(a) \cdot (g \cdot m)).$$

[Another way to say this is that both maps $R \otimes A \otimes M \to R \otimes M$ are *G*-equivariant.] A simple computation shows that the *A*-action map $A \otimes (R \otimes_A M) \to R \otimes_A M$ is *G*-equivariant. The multiplication and unit of the monad are defined in the same way as in Lemma 2.2.

Remark 2.7. The category of modules for the monad on A-mod_{Rep(G)} defined by R is equivalent to R-mod_{Rep(G)}.

Remark 2.8. The operation \otimes_A defines a tensor product on *A*-bimod_{Rep(*G*)} and *R* is an algebra object in this category.

2.2. Endomorphisms. We turn our attention to the ring $(\text{End}_{\mathbb{C}}(A), \circ)$ of \mathbb{C} -linear endomorphisms of A with

$$\tau: A \to \operatorname{End}_{\mathbb{C}}(A); \qquad a \mapsto [\tau_a: b \mapsto ab].$$

For $g \in G$, define an endomorphism $\bar{\rho}_g$ of $\operatorname{End}_{\mathbb{C}}(A)$ by $\bar{\rho}_g(f) = \rho_g \circ f \circ \rho_{g^{-1}}$.

Lemma 2.9. The A-ring $\operatorname{End}_{\mathbb{C}}(A)$ is G-equivariant, as is its A-subring $\operatorname{Diff}(A)$ of differential operators on A.

Proof. The morphisms $\bar{\rho}_g$ define an action of *G* on $\text{End}_{\mathbb{C}}(A)$, and it is by algebra automorphisms since

$$\bar{\rho}_g(f) \circ \bar{\rho}_g(f') = \rho_g \circ f \circ \rho_{g^{-1}} \circ \rho_g \circ f' \circ \rho_{g^{-1}} = \rho_g \circ f \circ f' \circ \rho_{g^{-1}} = \bar{\rho}_g(f \circ f')$$

for any $f, f' \in \text{End}_{\mathbb{C}}(A)$ and any $g \in G$. A simple computation shows that the following diagram commutes:

Hence $\bar{\rho}_g(\tau_a) = \tau_{\rho_g(a)}$ for any $a \in A$ and $g \in G$. If ∂ is a derivation of A, then $\bar{\rho}_g(\partial)$ is also a derivation:

$$\bar{\rho}_{g}(\partial)(ab) = \rho_{g}(\partial(\rho_{g^{-1}}(a)\rho_{g^{-1}}(b)))$$
$$= \rho_{g}(\partial(\rho_{g^{-1}}(a))\rho_{g^{-1}}(b) + \rho_{g^{-1}}(a)\partial(\rho_{g^{-1}}(b))) = \bar{\rho}_{g}(\partial)(a)b + a\bar{\rho}_{g}(\partial)(b)$$

The subalgebra $\text{Diff}(A) \subseteq \text{End}_{\mathbb{C}}(A)$ of differential operators is generated as an algebra by the image of τ and by the derivations of A. Since these are preserved by the action of G, we see that G acts on Diff(A) by $g \cdot \theta = \rho_g \circ \theta \circ \rho_{g^{-1}}$.

2.3. Sheaves. Let *X* be a scheme with an action of an algebraic group *G*. By reducing to the affine case, one can show that the following sheaves are *G*-equivariant:

- The structure sheaf \mathcal{O}_X .
- The sheaf $\mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X)$ of endomorphisms of \mathcal{O}_X .
- The sheaf \mathcal{D}_X of differential operators on *X*.

The last two are (in general) not algebra objects in $QCoh_G(X)$, but are algebra objects in $QCoh_G(X \times X)$ hence define monads on $QCoh_G(X)$.

Definition 2.10. The category of weakly *G*-equivariant *D*-modules on *X* is defined as the category of modules for the monad \mathcal{D}_X on $\mathsf{QCoh}_G(X)$.

In the affine case, this category is the same as modules for the algebra object $\Gamma(X, \mathcal{D}_X)$ in Rep(*G*).

2.4. A note on moment maps. Suppose now that *G* is a linear algebraic group. The moment map is the differential of $G \to \operatorname{Aut}_{\operatorname{alg}}(A)$, i.e. a map $\mu : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(A)$ whose image lies in the subspace of derivations of *A*. On the other hand, differentiating the action map $G \times \operatorname{End}_{\mathbb{C}}(A) \to \operatorname{End}_{\mathbb{C}}(A)$; $(g, f) \mapsto \rho_g \circ f \circ \rho_{g^{-1}}$ gives an action of \mathfrak{g} on $\operatorname{End}_{\mathbb{C}}(A)$, denoted $\xi \triangleright f$. For any $f \in \operatorname{End}_{\mathbb{C}}(A)$ and any $\xi \in \mathfrak{g}$, one computes that:

$$\mu(\xi) \circ f - f \circ \mu(\xi) = \xi \triangleright f.$$

3. Equivariant \mathcal{D} -modules

3.1. **Moment maps.** Suppose a reductive group *G* acts on *X*. For $x \in X$, define $a_x : G \to X$ by $a_x(g) = g \cdot x$. It has differential $d(a_x)_e : \mathfrak{g} \to T_x X$. The image $\overline{u}_x := d(a_x)_e(u)$ of $u \in \mathfrak{g}$ is called the infinitesimal action of $u \in \mathfrak{g}$ on *X* at *x*. We obtain a map

$$\mathfrak{g} \to \Gamma(X, \Theta_X); \qquad u \mapsto \overline{u}$$

from g to the space of vector fields on *X*, where Θ_X denotes the tangent sheaf on *X*. This map extends to an algebra homomorphism

$$\mu: \mathcal{U}\mathfrak{g} \to \Gamma(X, \mathcal{D}_X)$$

from the universal enveloping algebra of \mathfrak{g} to the global sections of the sheaf of differential operators \mathcal{D}_X on X. There is a symplectic action of G on T^*X , and there is a moment map given by:

$$T^*X \to \mathfrak{g}^*; \qquad (x, \alpha_x) \mapsto [u \mapsto \langle \alpha, \bar{u}_x \rangle].$$

We consider the following action of *G* on T^*X :

$$g \triangleright (x, \alpha_x) = \left(gx, d[x \mapsto g^{-1}x]^*_{gx}(\alpha_x)\right)$$

Here $d[x \mapsto g^{-1}x]_{gx}$ denotes the differential of the map $X \to X$, $x \mapsto g^{-1}x$ evaluated at the point gx.

Lemma 3.1. The map μ is *G*-equivariant, where *G* acts on g^* via the coadjoint action.

Proof. Up to fixing conventions and being careful about g versus g^{-1} , the computation is:

$$\mu(g \triangleright (x, \alpha_x)) = \mu \left(gx, d[x \mapsto g^{-1}x]_{gx}^*(\alpha_x) \right)$$

= $[u \mapsto \langle d[x \mapsto g^{-1}x]_{gx}^*(\alpha_x), d[h \mapsto hgx]_e(u) \rangle]$
= $[u \mapsto \langle \alpha_x, d[x \mapsto g^{-1}x]_{gx} \circ d[h \mapsto hgx]_e(u) \rangle]$
= $[u \mapsto \langle \alpha_x d[h \mapsto g^{-1}hgx]_e(u) \rangle]$
= $g \cdot [u \mapsto \langle \alpha_x, d[h \mapsto hx]_e(u) \rangle]$
= $g \cdot \mu(x, \alpha_x)$

Example 3.2. In the case of \mathbb{C}^{\times} acting on \mathbb{C} by scaling, the moment map is given by

$$\mu: T^*\mathbb{C} \simeq \mathbb{C}^2 \longrightarrow \operatorname{Lie}(\mathbb{C}^{\times})^* \simeq \mathbb{C}, \qquad (x, p) \mapsto xp$$

Example 3.3. In the case of SL_2 acting on \mathbb{C}^2 via the natural representation, the moment map is given by

$$\mu: T^* \mathbb{C}^2 \simeq \mathbb{C}^4 \longrightarrow \mathfrak{sl}_2^*$$
$$(x, y, p, q) \mapsto \begin{cases} E \mapsto yp \\ F \mapsto xq \\ H \mapsto xp - yq \end{cases}$$

Definition 3.4. The adjoint action of $u \in U(\mathfrak{g})$ on $a \in \Gamma(X, \mathcal{D}_X)$ is given by

$$u \triangleright a = \mu(u_{(1)}) \cdot a \cdot \mu(S(u_{(2)})).$$

Lemma 3.5. The multiplication on $\Gamma(X, \mathcal{D}_X)$ is $\mathcal{U}(\mathfrak{g})$ -linear, and hence $\Gamma(X, \mathcal{D}_X)$ defines an algebra object in the tensor category $\mathcal{U}(\mathfrak{g})$ -mod.

3.2. **Case of a free action.** Suppose *G* acts on *X* freely. Let $\pi : X \to X/G$ be the quotient map.

Lemma 3.6. The cotangent bundle $T^*(X/G)$ is given by the quotient $\mu^{-1}(0)/G$.

Proof. Fix $x \in X$ and let $Orb_x \subseteq X$ be the *G*-orbit in *X* through *x*. Since the action of *G* is free, we can identify (Orb_x, x) with (G, e) as pointed spaces, and T_xOrb_x with $T_eG = \mathfrak{g}$. Consider the following diagrams:

$$\begin{array}{cccc} \operatorname{Orb}_{x} & \longrightarrow X & & T_{x}(\operatorname{Orb}_{x}) \simeq \mathfrak{g} & \longrightarrow T_{x}X & & T_{x}^{*}X & \longrightarrow \mathfrak{g}^{*} \\ \downarrow & & \downarrow & & \downarrow & & \uparrow & & \uparrow \\ \{\pi(x)\} & \longrightarrow X/G & & 0 & \longrightarrow T_{\pi(x)}(X/G) & & T_{\pi(x)}^{*}(X/G) & \longrightarrow 0 \end{array}$$

We see that $\mu^{-1}(0)$ is a vector bundle over *X* whose fiber over a point $x \in X$ is $T^*_{\pi(x)}(X/G)$. Therefore, $\pi^*(T^*(X/G)) = \mu^{-1}(0)$.

 \square

3.3. Weakly equivariant *D*-modules. Suppose *G* acts on *X*. What is the appropriate notion of a *G*-equivariant *D*-module on *X*? There are two kinds of equivariance for *D*-modules on *X*, weak and strong.

Slogan: a weakly *G*-equivariant \mathcal{D} -module on *X* is a \mathcal{D}_X -module that is equivariant as an \mathcal{O}_X -module.

The category of weakly equivariant \mathcal{D} -modules, denoted $D_G(X)$ or $D(X/^wG)$, can be described in several ways:

- If X is affine (or just *D*-affine), then $D_G(X)$ is the category of $\Gamma(X, \mathcal{D}_X)$ -modules in the category of $\Gamma(G, \mathcal{O}_G)$ -comodules.
- The category QCoh(G) of quasicoherent sheaves on G is a monoidal category under convolution. The category D(X) of D-modules on X is a module category D(G). The category of weakly equivariant D-modules is defined as the category of QCoh(G)-equivariant functors from the category Vect of vector spaces to D(X):

$$\mathcal{D}_G(X) = \operatorname{Hom}_{\operatorname{OC}(G)}(\operatorname{Vect}, \mathcal{D}(X))$$

- The category D_G(X) has objects equivariant sheaf F equipped with a D_X-module structure such that the isomorphism Φ : a*F → p*F is a morphism of O_G ⊠ D_X-modules.
- Recall that the category of *D*-modules on *X* is equivalent to the category of quasicoherent sheaves on the de Rham space X_{dR} of *X*, i.e. D(X) = QC(X_{dR}). Then D_G(X) can be defined as the category of quasicoherent sheaves on the stack quotient X_{dR}/G:

$$D_G(X) = \mathrm{QC}(X_{\mathrm{dR}}/G).$$

3.4. Strongly equivariant *D*-modules.

Definition 3.7. The category D(X/G) of strongly *G*-equivariant *D*-modules on *X* has objects given by an equivariant sheaf \mathcal{F} equipped with a \mathcal{D}_X -module structure such that the isomorphism $\Phi : a^*\mathcal{F} \to p^*\mathcal{F}$ is a morphism of $\mathcal{D}_G \boxtimes \mathcal{D}_X$ -modules.

Recall that $G_{dR} = G/\hat{G}$, where \hat{G} is the formal group, and $X_{dR}/G_{dR} = (X/G)_{dR}$. Hence, the category of strongly equivariant *D*-modules on *X* is

$$\mathcal{D}(X/G) = \mathrm{QC}(X_{dR}/G_{dR}).$$

For X_{dR}/G , the \hat{G} -action is trivialized twice.

3.5. Quantum Hamiltonian reduction. We have the following Cartesian squares:

In other words, the square on the right indicates that $T^*(X/G) = \mu^{-1}(0)/G$. The square on the right receives a map from the one on the left, obtained by quotienting by *G*. Consequently, we have that

$$\mathsf{QCoh}(\mu^{-1}(0)) = \mathsf{QCoh}(T^*X) \otimes_{\mathsf{QCoh}(\mathfrak{g}^*)} \mathsf{Vect}$$
$$\mathsf{QCoh}(T^*(X/G)) = \mathsf{QCoh}(T^*X/G) \otimes_{\mathsf{QCoh}(\mathfrak{g}^*/G)} \mathsf{Rep}(G)$$

We now consider deformation quantization (in the sense of replacing functions on the cotangent bundle with differential operators) of the second identity. To this end, we introduce the category of Harish-Chandra bimodules.

Definition 3.8. The category of Harish Chandra bimodules HC has several descriptions:

• \mathcal{D} -modules on *G* that are weakly equivariant for the action of $G \times G$ by left and right multiplication. So

$$\mathrm{HC} = \mathcal{D}(G \setminus {}^{w}G / {}^{w}G) = D_{G} \operatorname{-mod}_{\mathcal{O}_{G} \otimes \mathcal{O}_{G} \operatorname{-comod}}.$$

• *Ug*-modules that are weakly *G*-equivariant:

$$HC = \mathcal{U}\mathfrak{g}\text{-mod}_{\mathcal{O}_{G}\text{-comod}}$$

• $\mathcal{U}\mathfrak{g}$ -bimodules that strongly equivariant for G_{Δ} , i.e. that are integrable for the diagonal action of G.

From the first description, it is clear that the category HC is monoidal; it is also a deformation quantization of the category $QCoh(\mathfrak{g}^*/G)$. We regard the category $D(X/^wG)$ as a right module category for HC and $Rep(G) = \mathcal{D}(\bullet/^wG) = \mathcal{D}(\bullet/G)$ as a left module category for HC.

Proposition 3.9. The category of strongly *G*-equivariant D-modules on *X* is equivalent to the tensor product of the category of weakly *G*-equivariant D-modules on *X* with the category Rep(G) over HC.

$$\mathcal{D}(X/G) = \mathcal{D}(X/^w G) \otimes_{HC} \operatorname{Rep}(G).$$

A consequence of Gaitsgory's 1-affineness theorem is that the categories $(\text{Rep}(G), \otimes)$ and (QCoh(G), *) are Morita equivalent. Similarly, the categories of bimodules for Rep(G) and QCoh(G) are equivalent. Under this equivalence, the algebra object $\text{QCoh}(G_{dR})$ corresponds to the algebra object HC. There is also the following picture. Let $\pi : X \to X/G$ be the quotient. The quantum Hamiltonian reduction of a weakly equivariant \mathcal{D} -module M on X is $\pi_*(M)^G$.

3.6. **Quantum group version.** We remark on the quantum version, following [BBJ18a, BBJ18b]. We replace Rep(G) by $\text{Rep}_q(G) = U_q(\mathfrak{g})$ -mod and HC by

$$HC_q = \mathcal{O}_q(G) \operatorname{-mod}_{\operatorname{Rep}_q(G)} = HH_*(\operatorname{Rep}_q(G) \operatorname{-mod})$$

In the TFT interpretation, $Z(\text{pt}) = Z(D^2) = \text{Rep}_q(G)$, which is an object in $Z(S^1) = \text{HC}_q$ -mod. Note that the monoidal structure on HC_q -mod is coming from stacking cylinders, not the pair of pants. So HC_q -modules are the same as braided $\text{Rep}_q(G)$ -modules.

Moreover,

$$\mathrm{HC}_{q}\operatorname{-mod} = \int_{S^{1}\times\mathbb{R}} \mathrm{Rep}_{q}(G)\operatorname{-mod}$$

and is also the universal enveloping algebra of the E_2 -algebra $\text{Rep}_q(G)$ (in categories). If C is a monoidal category for HC_q , then the category $C \otimes_{\text{HC}_q} \text{Rep}_q(G)$ is the Hamiltonian reduction of C.

Example 3.10. If *S* is a surface and $x \in S$ is a point on *S*, then the category

$$\operatorname{QCoh}_q(\operatorname{Loc}_G(S \setminus \{x\})) = \int_{S \setminus \{x\}} \operatorname{Rep}_q(G)$$

is a (right) module for HC_q , and the Hamiltonian reduction is

$$\mathcal{C} \otimes_{\mathrm{HC}_{q}} \mathrm{Rep}_{q}(G) = \int_{S \setminus \{x\}} \mathrm{Rep}_{q}(G) \otimes_{\int_{S \times \mathbb{R}} \mathrm{Rep}_{q}(G)} \int_{D^{2}} \mathrm{Rep}_{q}(G) = \int_{S} \mathrm{Rep}_{q}(G).$$

References

- [BBJ18a] David Ben-Zvi, Adrien Brochier, and David Jordan, *Integrating quantum groups over surfaces*, Journal of Topology **11** (2018), no. 4, 873–916.
- [BBJ18b] _____, Quantum character varieties and braided module categories, Selecta Mathematica 24 (2018), no. 5, 4711–4748.
- [BG12] Ken Brown and Ken R. Goodearl, Lectures on Algebraic Quantum Groups, Birkhäuser, 2012.
- [BG19] David Ben-Zvi and Iordan Ganev, *Wonderful asymptotics of matrix coefficient D-modules*, arXiv:1901.01226 [math] (2019), available at 1901.01226.
- [BK06] Erik Backelin and Kobi Kremnizer, *Quantum flag varieties, equivariant quantum D-modules, and localization of quantum groups,* Advances in Mathematics **203** (2006), no. 2, 408–429.
- [CG09] Neil Chriss and Victor Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, 2009.
- [HTT07] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, *D-Modules, Perverse Sheaves, and Repre*sentation Theory, Springer Science & Business Media, 2007. Google-Books-ID: 8ewkW5SC7DcC.
- [Kas12] Christian Kassel, Quantum Groups, Springer Science & Business Media, 2012.