Notes on *D*-modules on \mathbb{C}^*

IORDAN GANEV

JULY 2017

Definition 0.1. We define the following algebras:

- (1) Let $\mathcal{O}(\mathbb{C}^*) = \mathbb{C}[x^{\pm 1}]$ be the algebra of polynomial functions on \mathbb{C}^* .
- (2) Let $D(\mathbb{C}^*)$ be the algebra of differential operators on \mathbb{C}^* , generated by variables $x^{\pm 1}$ and ∂ subject to the relation $[\partial, x] = 1$.
- (3) Let $\mathcal{O}(\mathbb{C}) = \mathbb{C}[t]$ be the algebra of polynomial functions on \mathbb{C} .
- (4) Let A be the algebra of difference operators on \mathbb{C} , generated by variables t and $\Delta^{\pm 1}$ subject to the relation $\Delta t = (t+1)\Delta$.

The algebra A acts on $\mathcal{O}(\mathbb{C}) = \mathbb{C}[t]$, where Δ takes the polynomial $f(t) \in \mathcal{O}(\mathbb{C}) = \mathbb{C}[t]$ to the polynomial f(t + 1). Observe that A is the smash product of the algebra $\mathcal{O}(\mathbb{C})$ with the group algebra $\mathbb{C}[\Delta^{\pm 1}] = \mathbb{C}[\mathbb{Z}]$ of the integers, where \mathbb{Z} acts on \mathbb{C} by translations, so $\Delta t \Delta^{-1} = t + 1$. From this, one sees that an A-module is the same as a \mathbb{Z} -equivariant quasicoherent sheaf on \mathbb{C} . We denote the category of such sheaves by $\mathsf{QCoh}^{\mathbb{Z}}(\mathbb{C})$.

Lemma 0.2. There is an isomorphism $D \xrightarrow{\sim} A$ given by $x \mapsto \Delta^{-1}$ and $\partial \mapsto t\Delta$. Consequently there is an equivalence of categories

$$D(\mathbb{C}^*)$$
-mod $\simeq \mathsf{QCoh}^{\mathbb{Z}}(\mathbb{C}).$

The action of \mathbb{C}^* on itself by multiplication induces an action of \mathbb{C}^* on the algebra $D(\mathbb{C}^*)$, where $\lambda \in \mathbb{C}^*$ acts by $x \mapsto \lambda x$ and $\partial \mapsto \lambda^{-1} \partial$. We see that:

Lemma 0.3. The subalgebra of \mathbb{C}^* -invariants of $D(\mathbb{C}^*)$ is the space of polynomials in $x\partial$.

Definition 0.4. The category $D(\mathbb{C}^*)$ -mod_{\mathbb{C}^*} of weakly \mathbb{C}^* -equivariant *D*-modules on \mathbb{C}^* is the category of modules for the subalgebra of \mathbb{C}^* -invariants of $D(\mathbb{C}^*)$.

Thus, weakly \mathbb{C}^* -equivariant D-modules on \mathbb{C}^* can be identified with with quasi-coherent sheaves on \mathbb{C} , and we have an equivalence of categories: $D(\mathbb{C}^*)$ -mod_{\mathbb{C}^*} $\simeq \mathsf{QCoh}(\mathbb{C})$. The following diagram is useful:

Remark 0.5. In general, weakly G-equivariant D-modules on a linear algebraic group G (for either the left or the right multiplication action) are the same as modules for the universal enveloping algebra of the Lie algebra of G.

We state a final, elementary lemma:

Lemma 0.6. The forgetful functor $D(\mathbb{C}^*)$ -mod_{\mathbb{C}^*} $\to D(\mathbb{C}^*)$ -mod from weakly equivariant D-modules to ordinary D-modules corresponds to the induction functor $\mathbb{C}[t]$ -mod $\to A$ -mod.

$$\operatorname{Ind}: \operatorname{\mathsf{QCoh}}(\mathbb{C}) = \mathbb{C}[t] \operatorname{-mod} \to A \operatorname{-mod} = \operatorname{\mathsf{QCoh}}^{\mathbb{Z}}(\mathbb{C})$$

$$M \mapsto A \otimes_{\mathbb{C}[t]} M$$

So $\operatorname{Ind}(M) = \bigoplus_{n \in \mathbb{Z}} \Delta^n M$ as a vector space. Let $\sigma : \mathbb{C}[t] \to \mathbb{C}[t]$ be the algebra homomorphism defined by $t \mapsto t - 1$. (This corresponds to action of shifting by $1 \in \mathbb{Z}$ on \mathbb{C} .) Define

$$\phi: \sigma^* \mathrm{Ind}(M) \to \mathrm{Ind}(M)$$
$$\Delta^n m \mapsto \Delta^{n-1} m$$

This is an isomorphism of $\mathbb{C}[t]$ -modules:

 $\phi(t \cdot (\Delta^n m)) = \phi(\Delta^n((t - n + 1) \cdot m)) = \Delta^{n-1}((t - n + 1) \cdot m) = t \cdot (\Delta^{n-1}m) = t \cdot \phi(\Delta^n m).$