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Abstract

These notes were written in preparation for a talk given by the author in the Universtiy of
Texas at Austin’s graduate student geometry seminar on 15 October 2013.

1 Introduction

Character sheaves were invented by Lusztig in order to adapt classical constructions from the
representation theory of finite groups to the setting of reductive groups. Section 2 gives reminders
about characters of finite-dimensional representations of finite groups, leading to a discussion of the
desired properties of character sheaves in Section 3. After a (somewhat rushed) summary of the
theory perverse sheaves in Section 4, we state the definition of character sheaves in terms of the
horocycle correspondence in Section 5. Extra topics, depending on the audience’s interests, include
Section 6 on Grothendieck’s sheaf-function correspondence as a way to convert character sheaves
into characters of a finite group, and Section 7 on the notion of the center of a monoidal category
and how certain categories of character sheaves realize such categorical centers.

We emphasize that these lecture notes are just an overview and are not meant to provide a
thorough treatment of character sheaves and the necessary background material.

2 Characters of finite groups

In this section, we review a selection of concepts from the basic representation theory of finite
groups, and restate constructions in ways that will motivate later topics.

Let G be a finite group. The group algebra C[G] is the space of complex-valued functions on G
ClGl={f:G—-C}
equipped with multiplication given by convolution:

Frgla)= > f)fz) =) )y o).

Yz=x yeG

Representations of G are the same as modules for C[G]. The space of conjugation-invariant func-
tions, or class functions,

{feClG] | flyzy™") = f(z) for all 2,y € G}

forms a subalgebra of the group algebra. This subalgebra is denoted (C[%] because it can be

identified with the space of functions on the set of conjugacy classes % on (. Throughout these

notes, horizontal bars will symbolize quotients by conjugation actions.



Exercise: Show that the center of the group algebra coincides with class functions:

Let V' be a finite-dimensional representation of G over C. Recall that the character yy € C[G]
of V is defined as

XV : G—-C
g — tr(g; V).

In words, the character i is the complex-valued function on G that assigns to each g € G the
trace of the corresponding linear operator g : V' — V. Elementary properties of the trace function
imply that each character is a class function. If {V;} is the set of isomorphism classes of irreducible
finite-dimensional representations of G, then the set {xy;} forms a basis for C[g]

To place the character of V' in a more general framework, consider the function

¢:Endc(V) ~V*®V — C[G]
V' ®v i [g > (g v)].

Here, V* denotes the dual vector space to V' and {,) denotes the evaluation pairing on V* ® V.
The map ¢ is equivariant for the usual action of G on the left-hand side and the conjugation action
of G on the right-hand side. Taking invariants on both sides, we obtain the so-called ‘generalized
trace map’ for the representation V:

Endg(V) — C {g} .

Observe that the identity endomorphism maps to the character yy .

Exercises: Let H be a subgroup of G and V = Ind%(Cqiy) = C[G/H] be representation of G
induced from the trivial representation of H.

1. Show that the space C[G]" of H-bi-invariant functions on G is a subalgebra of C[G]. Ob-
serve that 7C[G]" can be identified with the space of functions C[H\G/H] on the double
cosets of H in G.

2. There is an isomorphism Endg (V) ~ C[H\G/H]. (Hint: the orbits of the diagonal action of
G on G/H x G/H can be identified with the double cosets H\G/H.) This common algebra is
known as the Hecke algebra for the pair (G, H).

3. Consider the maps (a special case of the horocycle correspondence):

G ¢ G ,

T T \G/H.

G H \G/

Show that the pullback-pushforward of functions g.r* : ClH\G/H] — (C[%] can be identified

with the generalized trace map for V. (If @ : X — Y is a function between finite sets and
f € C[X], then ax(f) € C[Y] is defined as ax(f)(y) = Xyeq-1(y) [(2).)



3 Motivation for character sheaves

Let K be an algebraically closed field and G a reductive group over K. For example, take K = C
or K =F, and G = GL,(K). Our motivating question is:

Can we develop a theory of characters for G?

To achieve this goal, we consider G as an affine algebraic variety and thus access powerful techniques
in algebraic geometry. As a consequence, we are forced to work with categorical versions of objects
in classical representation theory. The ‘characters’ we seek will not be functions on G, but rather
sheaves on G, called character sheaves. What properties should these sheaves satisfy? Ideally:

e Character sheaves would appear as the center of the appropriate categorical version of the
group algebra.

e Every sufficiently ‘small’ categorical representation of G would be assigned a character sheaf.

o If K = IF'p is the algebraic closure of a finite field F,, and G is defined over F,, then we can
hope to recover information about the characters of the finite group G(F,). This point is
perhaps the main motivation for Lusztig to invent character sheaves.

This talk will introduce the theory of character sheaves, as developed by Lusztig. The ideal
properties above are realized in the following ways:

e Certain categories of character sheaves are the centers of a Hecke category and its twisted
versions; these Hecke categories can be regarded as approximations to a categorical analogue
of the group algebra of G.

e Moreover, any dualizable module category for one of these Hecke categories is assigned a
character sheaf.

e One of the crowning achievements of the theory is an organization of the character tables of
finite groups of Lie type using characters sheaves. This approach is based on the Grothendieck
sheaf-function correspondence.

4 Perverse sheaves

Character sheaves are certain perverse sheaves; this section provides an overview of the theory of
perverse sheaves that emphasizes properties relevant to the definition of character sheaves. We
begin with basic definitions and examples, introduce the derived category of sheaves on X, mention
functoriality properties, define perverse sheaves, and consider equivariant constructions when an
algebraic group G acts on X. For more thorough treatments of the theory of perverse sheaves, we
refer the reader to [4], [3, Chapter 8|, and [7].

Definition. 1. A sheaf F on a topological space X is called a local system if there is a cover
{U;} of X such that the restriction F|y, is the constant sheaf on U; for all 1.



2. A sheaf F on a variety X is constructible! if, for every closed subvariety Y < X, there is
an open subvariety U Y such that the restriction F|y is a local system on U.

3. A complex F* of sheaves on a variety X is constructible if each cohomology sheaf H!(F) is
constructible.

Observe that any local system is a constructible sheaf, and any constructible sheaf can be regarded
as a constructible complex concentrated in degree 0. We give examples of each of these objects.

1. Suppose p: Y — X is a covering map. Taking sections of p gives a local system:
FU)={s:U—->Y |pos=Idy}.

This a local system of sets; to obtain a local system of C-vector spaces, take functions on
these discrete sets. If X is connected and has a universal cover, then there is an equivalence
of categories between local systems on X and representations of the fundamental group of X.

2. A skyscraper sheaf at a closed point of X is a constructible sheaf that is generally not a local
system.

3. The prototypical example of a constructible complex is the de Rham complex for a smooth

variety over C with the analytic topology.

Let D(X) = D®(Shv(X)) denote the bounded derived category of sheaves of C-vector spaces on
X. For the purposes of this talk, we do not explain the construction of the derived category in
detail; we only give a summary:

e Start with the category of complexes of sheaves on X.
e Adjoin inverses to quasi-isomorphisms in a controlled way.

e Obtain a triangulated category whose objects are still complexes of sheaves on X, but whose
morphisms are not as straightforward to describe.

e By slightly abuse of terminology, we refer the the objects of D(X) as just ‘sheaves’ rather
than ‘complexes of sheaves’.

A map f: X — Y of varieties induces the familiar functors of pushforward fy, proper pushfor-
ward? £, and pullback f* of sheaves:

Fur fi i ShV(X) = Shv(Y)  f*: Shv(Y) — D(X).

The functors (f*, fx) form an adjoint pair. There are derived functors (which we denote with the
same symbols):
fi, fr: D(X) = DY) f*: D(Y) — D(X),

!For varieties over C with an analytic topology, a different definition of a constructible sheaf is in use. Namely,
a sheaf F is constructible if there is a stratification of X such that the restriction of F to each stratum is a local
system. See [4, page 11].

2For a sheaf F on X, the sections of the proper pushforward fiF over an open subset U C Y are defined as the
sections of F(f~*(U)) with proper support.



In addition, for reasonable maps f, the functor f has a right adjoint f' : D(Y) — D(X) on
the derived level. Part of the advantage of the derived category is that these functors have nicer
properties — or indeed only exist — at the derived level, rather than at the abelian level.

Local systems are relatively simple types of sheaves, but they are not preserved by the functors
fe, fr, f*, f* in general. However, constructible sheaves are preserved by these functors (for reason-
able maps f). In fact, constructible complexes are the smallest subcategory containing local systems
and closed under these functors. Therefore, we work with the full subcategory D.(X) < D(X) of
constructible complexes?.

Recall that the abelian category Shv(X) of sheaves on X, regarded as complexes concentrated in
degree 0, is a full subcategory of D(X). In fact, Shv(X) is a special type of abelian subcategory,
called a ‘heart of t-structure’ on D(X). One can think of a ¢-structure a ‘coordinate system’ for
D(X), and the heart as the basis of the coordinate system. A schematic illustrating this analogy is
given below, where the z-axis is labeled by iterations of the shift functor on D(X). A t-structure
defines a notion of cohomology for objects of D(X) and taking cohomology is analogous to measuring
where we are in D(X) relative to a coordinate system.

Shv(X) Perv(X)

M3l 21 [ 20 13l

The category Shv(X) is a natural heart, but there may be other hearts that work better for other
purposes. It turns out that D.(X) has a perverse coordinate system, or ‘heart’, that is particularly
nice (despite its name). More precisely, D.(X) contains a full abelian subcategory Perv(X) whose
objects are

{F e D.(X) | dim(supp(H*(F))) < —i and dim(supp(H'(DF))) < —i},

where D is the Verdier duality functor which we do not define here since we plan not to linger on
this definition. Some of the nice properties of Perv(X) are

e [t is an abelian category all of whose objects have finite length.
e The irreducible objects are given in terms of local systems on closed subvarieties.
e [t leads to beautiful categorifications of important structures in representation theory.

e There is an intimate connection between perverse sheaves and D-modules via the Riemann-
Hilbert correspondence.

3As an aside, the Verdier duality functor I squares to the identity for constructible complexes.



Finally, all constructions of this section can be done equivariantly when group actions are involved.
That is, suppose an algebraic group G acts on a variety X. There is a category of DCG(X ) of
equivariant constructible complexes on X, and it contains a heart PervG(X ) of equivariant perverse
sheaves on X. The forgetful functor D& (X) — D.(X) is compatible with the perverse t-structures.

Notational remark: For the remainder of these notes, we write D(X) instead of D.(X), D(X/QG)
instead of DS (X), and Perv(X /G) instead of Perv®(X).

5 Definition of character sheaves

Let K be an algebraically closed field and G a reductive group over K. For example, take K = C
or K = F, and G = GL,(K). Fix a Borel subgroup B with unipotent radical N = R,(B). Fix a
maximal torus T' < B and let W = Ng(T')/T be the Weyl group. For example, in the case that
G = GL,(K), the upper triangular matrices form a Borel subgroup whose unipotent radical is the
subgroup of upper triangular matrices with 1’s along the diagonal. A maximal torus is the subgroup
of diagonal matrices. The Weyl group of GL,,(K) is the symmetric group .S,,.

The Borel subgroup B has several valuable properties. For example, B is self-normalizing and
the space of Borel subgroups can be identified with the flag variety G/B. The Borel subgroup B is
a minimal subgroup such that the quotient G/B has the structure of a projective variety. Finally,
B admits a semi-direct product decomposition B = N x T

Let’s recall to the horocycle correspondence for the pair (G, B):

G ¢ G »

c - 5 B\G/B.

In the finite group case, the quotients were just sets; now they are stacks, but we largely ignore this
technical point*. The category D(B\G/B) of B-equivariant sheaves on the flag variety G//B has a
convolution structure, making it a monoidal category known as the Hecke category. The Hecke
category can be regarded as a substitute for the group algebra. In particular, many fundamental
categories related to the representation theory of G are module categories for the Hecke category.
Similar to the case of finite groups, we consider the pullback-pushforward functor along the horocycle
correspondence:

qr* : D(B\G/B) —> D (g) .

Intuition from the setting of finite groups suggests that the image of this functor gives some sort of
‘characters’ of G. In fact, a certain class of character sheaves, called unipotent character sheaves,
are the irreducible perverse constituents of objects in the image of this functor.

Definition. An irreducible perverse sheaf F in D(%) is a unipotent character sheaf if F appears
as a constituent of ¢ir*A for some A € D(B\G/B).

To obtain all character sheaves, we consider the space Y = N \%/N , that is, the quotient of G
by the action of N x T x N given by (n1,t,n2) - g = nitgt 'na. This action is well-defined since T
normalizes N. We have a more general version of the horocycle correspondence:

G ¢4 G

r G
E(—E—)Y_N\T/N'

4 Alternatively, one can work with equivariant sheaves on varieties rather than sheaves on stacks.




Observe that T acts on Y via t-[g] = [tg], and the quotient is identified with B\G/B. All character
sheaves will be obtained by pulling back and pushing forward along this correspondence, but we
restrict our attention to sheaves on Y that interact nicely with the action of T'. First we introduce
the notion of a monodromic sheaf on a space with a T-action.

Definition. Suppose a : T x X — X is an action of T on X. Let £ be a 1-dimensional local
system on 7. An £-monodromic sheaf on X is a sheaf 7 € D(X) equipped with an isomorphism
a*F ~ L[X] F satisfying the evident associativity and unital conditions.

Let D*(Y") denote the category of £L-monodromic sheaves on Y. Observe that there is an equiv-
alence of categories DE7(Y) = D(B\G/B), where K is the trivial local system on 7.

Definition. An irreducible perverse sheaf F € D(%) is a character sheaf if it appears as a
constituent of r* A for some A € D*(Y') for some 1-dimensional local system £ on T.

6 Grothendieck’s sheaf-function correspondence

Let p be a prime and let X be a variety over K = Fp that is defined over F,. Our ongoing
example GL,,(K) satisfies this condition. Fix a power ¢ = p" of p and consider the usual Frobenius
endomorphism of F,, given by a — «a?. This map extends to a Frobenius endomorphism Fr on X:

Fr: X —->X
whose fixed points are the F,-rational points of X:
X(F,) = X

For example, on GL,(K), the Frobenius map corresponding to ¢ raises every entry of a matrix to
the ¢-th power: (a;;) — (agj). The set of fixed points of F'r on GL,,(K) is the finite group GL,,(FF,).

Technical Remark: We work in the étale topology on X and with coefficients in the algebraic
closure Qg of the field Q; for a prime ¢ different from p. The reason for doing so is that resulting
sheaf theory resembles the classical one for complex analytic varieties. Note that Q; ~ C as fields.
The constructions and results we describe are independent of the choice of £ (so long as ¢ # p).

The idea of the Grothendieck sheaf-function correspondence is that functions on the set X" are
related to sheaves fixed by the Frobenius endomorphism on X. Suppose that F is a complex of
sheaves fixed by F'r, i.e. there is an isomorphism

¢ Fr*F = F.

Such an isomorphism is called a Weil structure on F. Throughout this discussion, we work with
a fixed a Weil structure ¢ on F. If F is irreducible, then there is a unique Weil structure up to a
non-zero scalar. Observe that a Weil structure defines a linear endomorphism of the stalk F, for
every z € X" = X (F,):

(bz:(FT*]:)m:fFr(a:) = Fo — Fa.

More relevant for the derived setting, we obtain linear endomorphisms of the stalks of the cohomol-
ogy sheaves at points x € X (IF,):

bt H(F) e — HY(F),.



Define a function xr, on X" = X( F,) by taking an alternating sum of the traces of these
functions:

X7 X(Fy) — Q
= Y (1) (s H (F)a)-

€7
The function xr 4 is known as the characteristic function of the sheaf 7 with Weil structure ¢.
A ‘meta-theorem’, known as Grothendieck’s sheaf-function correspondence, states that:

Interesting functions on X (F,) arise as characteristic functions of perverse sheaves on
X with a Weil structure.

In particular, when X = G is a group, the expectation is the characteristic functions of certain
perverse sheaves on G should coincide with the characters of the finite group G(F;). One of Lusztig’s
remarkable results asserts that this is precisely the case for G = GL,,, where the perverse sheaves
are the character sheaves.

Theorem 1. Suppose F is a character sheaf on GLn(Fp) equipped with a Weil structure. Then
the characteristic function xr 4 s (up to a nonzero scalar) an irreducible character of GLy(Fy).
Moreover, there is a bijection

character sheaves on GLy,(F,) irreducible characters
with Weil structure — of GL,,(Fy)
(up to isomorphism) (up to nonzero scalar)

given by (F,¢) — XF¢-

For other reductive groups G, there is still a bijection between Frobenius-fixed character sheaves
and irreducible characters of the corresponding finite group G(F,), but it is not given in all cases
by taking characteristic functions. However, the characteristic functions form an orthonormal basis
for the class functions on G(F), and there is a ‘small’ change-of-basis matrix that relates the basis
of characteristic functions x4 to the basis of irreducible characters xy . Here, ‘small’ means that
the number of irreducible constituents of each characteristic function is bounded independently of
q and the coefficients are also bounded independently of ¢q. The precise statement involves almost
characters and Lusztig’s Fourier transform matrices; see [6] for more details.

7 Vector bundles on a finite group and Drinfeld centers

Let G be a finite group and VB(G) the monoidal category of vector bundles (i.e. G-graded vector
spaces) on G. The monoidal structure is given by

Y=g

There is a notion of the ‘center’ of a monoidal category (which we will discuss momentarily) and the
center of VB(G) is the category VB(%) of adjoint-equivariant vector bundles on G. To be explicit,
an adjoint equivariant vector bundle on G is a vector bundle V' on G equipped with isomorphisms
Vgo : Vygg—1t — V. for every z, g € G satisfying

Yoha = Vhe © Vg han-1  and e, = Idy,



for all z,g,h € G, where e € GG is the identity.

Question: What is the center of a monoidal category (C,®)?
To motivate the construction, let A be a ring and consider the two maps
s1,82 : A 3 Hom(A, A)

si(a)(b) = ab, sa(a)(b) = ba,

that send a € A to the algebra endomorphisms of right and left multiplication by a. The center
Z(A) can be described as the equalizer of s; and so: Z(A) = {a€ A | s1(a) = s2(a)}.

Now let (C,®) be a tensor category and consider the two maps from C to tensor endofunctors of

C
C 3 Homg(C,C)

given by X —» X ® (—) and X — (—) ® X. The Drinfeld center Z(C) of C is defined as
the ‘categorical equalizer’ of these two maps. Explicitly, the objects of Z(C) are pairs (X,ox)
consisting of an object of X and a natural transformation of functors ox : X ® (=) —» (—) ® X
satisfying ox (Y ® Z) = (Idy ® ox(Z)) o (6x(Y) ® Idz). For more details, including definitions of
the morphisms and the braided monoidal structure of Z(C), see section XIII.4 of Kassel’s book [5].

A remark to make at this point is that we can extend the maps above to form a simplicial object
C = Homg(C,C) = Homg(C x C,C)....

The limit of this diagram (taken in the appropriate category) is known as the Hochschild cohomology
of C. This construction is relevant in the context of oo-categories. We have that Z(C) = HH(C).

Let’s return to vector bundles on a finite group. Recall that the center of a matrix algebra over C
(of any size) consists of the scalar matrices, i.e. Z(Mat,C) ~ C. A categorical version of this result
(known as Miiger’s Morita invariance of the Drinfeld center) implies the following two facts:

e Z(VB(G)) = VB(&).
o Z(VB(H\G/H)) = VB(&) for any subgroup H of G.

A theorem of Bezrukavnikov, Finkelberg, and Ostrik [1] states that the category of character
sheaves can be identified with the Drinfeld center of a monoidal category of Harish-Chandra bimod-
ules. On the other hand, Ben-Zvi and Nadler [2| have shown that the co-category of A-monodromic
character sheaves can be identified with both the Hochschild homology and cohomology of the
Hecke category Dy (B\G/B) of A-twisted D-modules on the finite orbit stack B\G/B. A discussion
of either of these results is beyond the scope of these notes; the only thing to say is that both sets
of authors work on the D-modules side of the Riemann-Hilbert correspondence.
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