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1. Young tableaux

A partition of a nonnegative integer n is a weakly decreasing sequence of positive integers whose
sum is n. A partition is usually denoted λ = (λ1, λ2, . . . , λk). For example, (4,3,1,1) is a partition
of 9. The only partition of 0 is the empty partition ∅. A Young diagram is a collection of boxes
arranged in left-justified rows such that the number of boxes in each row decreases weakly from
top to bottom. An example is

.

The size of a Young diagram is the total number of boxes. Observe that partitions of n are in
one-to-one correspondence with Young diagrams of size n. If λ is a partition, then the corresponding
Young diagram is said to have shape λ. A Young tableau is a Young diagram that is filled by
positive integers according to two rules: (1) the entries in each row are weakly increasing and (2)
the entries in each column are strictly increasing. An example is

1 1 3 4

2 4 4

4

6

.

2. Bumping and products

The bumping algorithm takes a tableau T and a positive integer x and produces a new tableau,
which we denote (T ← x). The idea is to give a systematic way of adding to T a new box with
entry x. I will illustrate this through an example during the talk, but here is the full algorithim
written out. If x is greater than or equal to all the entries in the first row of T , then add a box
labelled by x at the end of the first row. Otherwise, find the leftmost box of the first row that has
entry strictly greater than x. Relabel this box with x and remove (‘bump’) the old entry, call it
y. Now repeat the process with y and the second row. Keep going until the bumped entry can be
placed in a new box at the end of a row, possibly at the very bottom of the diagram.

Let T and U be two tableaux. Let x1, x2, . . . , xk denote the entries of U , listed row by row from
bottom to top, and left to right in each row. Define the product T · U of T and U to be the new
tableau obtained by successive bumping:

T · U = (. . . (((T ← x1)← x2)← x3) · · · ← xk).
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Since each step adds one new box, the size of the product of T and U is the sum of the sizes of T
and U . Here are some important properties, whose proofs are exercises:

• Let ∅ denote the empty tableau. For any tableau T , we have T · ∅ = ∅ · T = T , so ∅ is the
identity of this multiplication.

• The multiplication is associative: T · (U · V ) = (T · U) · V for any tableaux T,U, V .

• The multiplication is not commutative: in general T · U 6= U · T .

In fancy language, this shows that the set of tableaux, together with this product, forms a monoid.
(A monoid M is a set with an associative multiplication · : M ×M →M and a unit. So a monoid
is like a group, but without the requirement of inverses.)

3. Schur polynomials

I will assume familiarity with rings. Arguably the most famous ring is the integers Z. Another
important ring is Z[x], the collection of polynomials in the variable x with integer coefficients. For
the remainder of this section, we fix a positive integer n and consider the ring Z[x1, . . . , xn] of
polynomials in n variables with integer coefficients.

Let T be a tableau whose entries are in the set {1, . . . , n}. Let mi be the number of boxes of T
that are labelled with the integer i, where 1 ≤ i ≤ n. Associate to T the monomial

xT = xm1
1 · · ·x

mn
n .

I will do an example during the talk. Now consider a partition λ of k. To λ we associate a
polynomial sλ in Z[x1, . . . , xn], called the Schur polynomial of λ, and defined as

sλ(x1, . . . , xn) =
∑

T has shape λ

xT ,

where the sum runs only over tableau with entries in {1, . . . , n}.

During the talk, we will see that the Schur polynomial of the partition λ = (k) is the k-th
complete symmetric polynomial in n variables, defined as

hk(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n
xi1 · · ·xik .

Some examples are h1(x1, x2) = x1 + x2 and h2(x1, x2) = x2
1 + x1x2 + x2

2. As an exercise, write out
h1, h2, and h3 for n = 3, 4.

The Schur polynomial of the partition λ = (1k) = (1, . . . , 1) of k is the k-th elementary sym-
metric polynomial in n variables, defined as

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n
xi1 · · ·xik

for k ≥ 1 and e0 = 1 for k = 0. Observe that the difference between the definitions of hk and ek is
that weak inequalities are now replaced by strict inequalities. This difference reflects the rules for
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filling in the rows and columns of a Young diagram in order to obtain a Young tableau. The complete
symmetric polynomials are ‘bigger’ than the elementary symmetric polynomials in the sense that
any monomial that appears in ek will also appear in hk. Some examples are e1(x1, x2) = x1 + x2,
e2(x1, x2) = x1x2, and ek(x1, x2) = 0 if k > 2. As an exercise, write out ek for n = 3, 4. Note that
ek = 0 if k > n.

4. Symmetric polynomials

A polynomial f in Z[x1, . . . , xn] is said to be symmetric if it is fixed by any permutation of the
variables. In symbols, this says that

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n))

for any permuation σ. (A permuation is just a bijection σ : {1, . . . , n} → {1, . . . , n}.) To see if
you understand this defintion, convince yourself that each ek and hk is a symmetric polynomial. In
fact, the Schur polynomial sλ is always symmetric, but I will not prove this.

The collection Λ(n) of symmetric polynomials in n variables forms a subring of Z[x1, . . . , xn]. It
is a theorem that the elementary symmetric polynomials {ek}nk=1 generate Λ(n) as a Z-algebra.
Moreover, these ek are algebraically independent, so we can write Λ(n) ' Z[e1, . . . , en]. The same
result is true for {hk}nk=1. See [4, pp. 20-22] for more details.

Define a ring homomorphism ρn : Λ(n+1) → Λ(n) by evaluating at xn+1 = 0 (that is, remove all
monomials in which xn+1 appears). So we have an ‘inverse system’:

Λ(0) ρ0←− Λ(1) ρ1←− Λ(2) ρ2←− Λ(3) ρ3←− . . . .

The inverse limit Λ of this system is called the ring of symmetric functions. In symbols,

Λ = lim
←−

Λ(n) = {(fn)n∈N0 ∈
∏
n∈N0

Λ(n) : ρn(fn+1) = fn}.

This construction may seem very bizarre if you haven’t seen inverse limits before. The advantage
of the ring Λ is that it allows us to discuss symmetric polynomials in arbitrarily many variables.
In some cases, it serves as a ‘bookkeeping’ device that simplifies more complicated structures.

5. Application: the representation theory of Sn

Most likely, I will not have time to say much about these last two sections. Besides, the material
discussed below is mostly beyond the undergraduate level. Still, I would like students to be aware
some of the applications of Young tableaux and symmetric polynomials.

A representation of a finite group G is a vector space V , together with a homomorphism
ρ : G → GL(V ). In other words, a representation of G a linear action of G on V . A subspace W
of a representation V is a subrepresentation if W is invariant under the action of G; in symbols,
if ρ(g)(w) ∈ W for any g ∈ G and w ∈ W . A representation V of G is irreducible if it has no
nontrvial subrepresentations. One should think of irreducible representations as the building blocks
for all other representations. It is a theorem from basic representation theory that the number of
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irreducible representations of a finite group G is equal to the number of conjugacy classes of G. In
general there is no ‘natural’ way to associate to each conjugacy class an irreducible representation
of G.

In the case of the symmetric group Sn, however, something special happens. Recall that a
conjugacy class of Sn consists of all the elements with a certain cycle type decomposition. In
turn, it is not difficult to see that cycle type decompositions are in bijection with partitions of n.
Thus, to every conjugacy class in Sn we can use the arguments above to obtain a Schur polynomial
sλ. On the other hand, let Rn be the free Z-module generated by the irreducible representations
of Sn. Set R =

⊕
nRn. There is a meaningful way to define (1) a ring structure on R and

(2) and isomorphism R ∼→ Λ (See [1, p.294]). Moreover, under this isomorphism, the irreducible
representations are mapped to the Schur polynomials. In particular, the alternating representation
of Sk corresponds to ek, while the trivial representation of Sk corresponds to hk. Thus, consideration
of symmetric polynomials gives a natural bijection between conjugacy classes in Sn and irreducible
representations of Sn.

6. Application: the cohomology of Grassmannians

Perhaps you are aware that cohomology is a machine that assigns to each topological space X a
(graded) ring H∗(X). An important space in geometry is the Grassmannian of k-dimensional
subspaces in Cn, defined as

Gr(k, n) = {W : W is a subspace of Cn and dim(W ) = k}.

One description of the cohomology ring H∗(Gr(k, n)) of the Grassmannian involves Young tableaux.
First, for 0 ≤ i ≤ n, fix a subspace Fi of Cn such that Fi has dimension i and Fi ⊂ Fi+1. We obtain
what is known as a complete flag

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cn.

Let λ be a partition of n whose Young diagram has at most k rows and at most n − k columns.
Define the Schubert variety Ωλ corresponding to λ as

Ωλ = {W ∈ Gr(k, n) : dim(W ∩ Fn+i−λi
) ≥ i, for 1 ≤ i ≤ k}.

It turns out that each Schubert variety defines an element σλ of the cohomology ring H∗(Gr(k, n)).
In fact, one can show that the σλ form a Z-basis for H∗(Gr(k, n)) and their multiplication satisfies
the same formulas that the Schur polynomials sλ satisfy (see [2, p. 146] for a more complete
discussion).
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