Torus-valued moment maps

Iordan Ganev

October 2014
In this document we state the definition of a torus-valued moment map, prove basic properties of these maps, and give an example.

1 Review of ordinary moment maps

Let G be an algebraic group with Lie algebra \mathfrak{g}. Suppose G acts on a smooth symplectic variety (X, ω) preserving the symplectic form.

Definition 1.1. For $\xi \in \mathfrak{g}$, define a vector field v_{ξ} on X by $\left(v_{\xi}\right)_{x}=d\left(a_{x}\right)_{e}(\xi)$ where $a_{x}: G \rightarrow X$ is the map taking g to $g x$. We say that v_{ξ} is the vector field generated by the infinitesimal action of ξ.

Let $\langle\rangle:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ denote a choice of an invariant positive definite inner product on \mathfrak{g} which we use to identify $\mathfrak{g} \simeq \mathfrak{g}^{*}$.

Definition 1.2. A moment map for the action of G on X is a smooth map $\phi: X \rightarrow \mathfrak{g}$ that satisfies

$$
\omega\left(v_{\xi},-\right)=\langle d \phi, \xi\rangle
$$

for any $\xi \in \mathfrak{g}$.
The equation can be written locally as $\omega_{x}\left(\left(v_{\xi}\right)_{x}, v\right)=\left\langle(d \phi)_{x}(v), \xi\right\rangle$, for $x \in X$ and $v \in T_{x} X$, where we identify the tangent space $T_{\xi} \mathfrak{g}$ with \mathfrak{g} itself.

2 Definition of torus-valued moment maps

Let $L_{g^{-1}}: G \rightarrow G$ denote the left translation action of g^{-1} taking h to $g^{-1} h$.
Definition 2.1. The left-invariant Maurer-Cartan form $\theta \in \Omega^{1}(G, \mathfrak{g})$ is defined as

$$
\theta_{g}=d\left(L_{g^{-1}}\right)_{g}: T_{g} G \rightarrow \mathfrak{g}=T_{e} G .
$$

The notion of a group-valued moment map $X \rightarrow G$ is introduced in AMM. Here we recall the definition in the case that $G=T$ is a complex algebraic torus, and X is a complex manifold. Throughout, we consider the adjoint (equivalently, trivial) action of T on itself.

Definition 2.2. A torus-valued moment map is a smooth, T-equivariant map $\mu: X \rightarrow T$ such that

$$
\omega\left(v_{\xi},-\right)=\left\langle\mu^{*} \theta, \xi\right\rangle .
$$

The corresponding homomorphism $\mu^{\#}: \mathcal{O}(T) \rightarrow \mathcal{O}(X)$ is called a comoment map.
To be explicit, the condition can be expressed locally as $\omega_{x}\left(\left(v_{\xi}\right)_{x}, v\right)=\left\langle\theta_{\mu(x)}\left(d \mu_{x}(v)\right), \xi\right\rangle$, for $x \in X$ and $v \in T_{x} X$.

Proposition 2.3. Choose an isomorphism $T \simeq\left(\mathbb{C}^{\times}\right)^{n}$. A T-equivariant smooth map $\mu: X \rightarrow T$ is a group-valued moment map if and only if

$$
\omega\left(v_{\xi},-\right)=\sum_{i=1}^{n} \frac{d \mu_{i}}{\mu_{i}} \xi_{i},
$$

where μ_{i} is the composition of μ with the ith projection.
Proof. The Maurer-Cartan form for T can be written as $\left[\theta_{g}(v)\right]_{i}=g_{i}^{-1} v_{i}$ for $g \in T \simeq\left(\mathbb{C}^{\times}\right)^{n}$ and $v \in T_{g} T \simeq \mathbb{C}^{n}$, and the pairing \langle,$\rangle can be taken to be the usual dot product.$

Exercise: Check that the moment map condition is compatible with the the skew-symmetry of ω.

Remark 2.4. We see from the reformulation above that a map $\mu: X \rightarrow T$ is a torus-valued moment map if and only if a branch of $\log \circ \mu$ is locally an ordinary moment map for the action of T on X.

3 Properties of torus-valued moment maps.

Let $K=\left(\mathbb{C}^{\times}\right)^{d}$ and $T=\left(\mathbb{C}^{\times}\right)^{n}$ be standard tori of rank d and n where $d<n$. Let $\phi: K \hookrightarrow T$ be an inclusion. Thus, ϕ has the form $\phi(k)_{i}=\prod_{j=1}^{d} k_{j}^{m_{i j}}, i=1, \ldots, n$, for some integers $m_{i j} \in \mathbb{Z}$. There is a 'transpose' map $\phi^{\dagger}: T \rightarrow K$ defined by $\phi^{\dagger}(t)_{j}=\prod_{i=1}^{n} t_{i}^{m_{i j}}$. Let $H=T / K$ be the quotient torus. Denote by $\psi: T \rightarrow H$ the quotient map, and $\psi^{\dagger}: H \rightarrow K$ its transpose.
Proposition 3.1. If $\mu: X \rightarrow T$ is a moment map, then the composition $\phi^{\dagger} \circ \mu$ is a moment map for the action of K on X induced by ϕ.

First proof. Let \mathfrak{k} denote the Lie algebra of K and let $\operatorname{Lie}(\phi): \mathfrak{k} \rightarrow \mathfrak{t}$, and $\operatorname{Lie}\left(\phi^{\dagger}\right)=\operatorname{Lie}(\phi)^{T}: \mathfrak{t} \rightarrow \mathfrak{k}$ denote the induced Lie algebra homomorphisms. We use the same notation for the maps on 1 -forms:

$$
\operatorname{Lie}(\phi): \Omega^{1}(-, \mathfrak{k}) \rightarrow \Omega^{1}(-, \mathfrak{t}), \quad \operatorname{Lie}\left(\phi^{\dagger}\right): \Omega^{1}(-, \mathfrak{t}) \rightarrow \Omega^{1}(-, \mathfrak{k}) .
$$

These maps commute with the pullback of 1 -forms along smooth maps. Let θ_{T} and θ_{K} be the Maurer-Cartan forms on T and K. Then ${ }^{1}\left(\phi^{\dagger}\right)^{*} \theta_{K}=\operatorname{Lie}\left(\phi^{\dagger}\right)\left(\theta_{T}\right)$.

For $\zeta \in \mathfrak{k}$, write v_{ζ}^{K} for the vector fields on X generated by ζ. In fact, v_{ζ}^{K} coincides with the vector field $v_{\operatorname{Lie}(\zeta)}^{T}$ generated by the image of ζ in \mathfrak{t}. The remainder of the proof is a computation:

$$
\begin{aligned}
\left\langle\left(\phi^{\dagger} \circ \mu\right)^{*} \theta_{K}, \zeta\right\rangle & =\left\langle\mu^{*} \circ\left(\phi^{\dagger}\right)^{*} \theta_{K}, \zeta\right\rangle=\left\langle\mu^{*}\left(\operatorname{Lie}\left(\phi^{\dagger}\right)\left(\theta_{T}\right)\right), \zeta\right\rangle=\left\langle\operatorname{Lie}\left(\phi^{\dagger}\right)\left(\mu^{*} \theta_{T}\right), \zeta\right\rangle \\
& =\left\langle\mu^{*} \theta_{T}, \operatorname{Lie}(\phi)(\zeta)\right\rangle=\omega\left(v_{\operatorname{Lie}(\zeta)}^{T},-\right)=\omega\left(v_{\zeta}^{K},-\right) .
\end{aligned}
$$

Second proof. Adopt the notation of the previous proof. Observe that $\left(\phi_{*} \zeta\right)_{i}=\sum_{j=1}^{d} m_{i j} \zeta_{j}$. We have:

$$
\omega\left(v_{\zeta}^{K},-\right)=\omega\left(v_{\operatorname{Lie}(\phi) \zeta}^{T},-\right)=\sum_{i=1}^{n} \frac{d \mu_{i}}{\mu_{i}}(\operatorname{Lie}(\phi)(\zeta))_{i}=\sum_{i=1}^{n} \sum_{j=1}^{d} \frac{m_{i j} \zeta_{j} d \mu_{i}}{\mu_{i}} .
$$

[^0]On the other hand, let $\left(\phi^{\dagger} \circ \mu\right)_{j}$ denote the composition of $\phi^{\dagger} \circ \mu$ with the j th projection, so $\left(\phi^{\dagger} \circ \mu\right)_{j}(x)=\prod_{i=1}^{n} \mu_{i}(x)^{m_{i j}}$. Then one computes:

$$
d\left[\left(\phi^{\dagger} \circ \mu\right)_{j}\right]=\sum_{i=1}^{n} m_{i j} \mu_{i}^{m_{i j}-1} d \mu_{i} \prod_{i^{\prime}=1, i^{\prime} \neq i}^{n} \mu_{i^{\prime}}^{m_{i^{\prime} j}}=\sum_{i=1}^{n} \frac{m_{i j}\left(\phi^{\dagger} \circ \mu\right)_{j} d \mu_{i}}{\mu_{i}} .
$$

Therefore,

$$
\sum_{j=1}^{d} \frac{d\left[\left(\phi^{\dagger} \circ \mu\right)_{j}\right]}{\left(\phi^{\dagger} \circ \mu\right)_{j}} \zeta_{j}=\sum_{i=1}^{n} \sum_{j=1}^{d} \frac{m_{i j} \zeta_{j} d \mu_{i}}{\mu_{i}}=\omega\left(v_{\zeta}^{K},-\right)
$$

The claim follows.
Remark 3.2. In the proposition and its proof, we did not use the hypothesis that ϕ is injective. The same result, with the same proof, applies to an arbitrary homomorphism $\phi: T \rightarrow K$ of tori.

Lemma 3.3. Suppose the action of T on X is trivial. Then $\mu: X \rightarrow T$ is moment map if and only if μ is a constant map.

Proof. In this case, the vector field v_{ξ} is the zero for any $\xi \in \mathfrak{t}$. Thus, μ is a moment map if and only if $\mu^{*} \theta=0$. This is equivalent to $\mu_{i}(x)^{-1}\left(d\left(\mu_{i}\right)_{x}(v)\right)=0$ for all $x \in X, v \in T_{x} X, i=1, \ldots, n$. Since $\mu_{i}(x)$ is nonzero, the above holds if and only if $d\left(\mu_{i}\right)_{x}=0$ for all $x \in X, i=1, \ldots, n$, i.e. if and only if μ_{i} is constant for all $i=1, \ldots, n$. The lemma follows.

Lemma 3.4. Suppose $\mu: X \rightarrow T$ is a moment map, and the action of K on X is trivial. Then there is an induced action of H on X and a moment map $\mu_{H}: X \rightarrow H$ that satisfies $\mu=\mu_{H} \circ \phi^{\dagger} \circ L_{t_{0}}$ for some $t_{0} \in T$.

In other words, the following diagram commutes:

Proof. Let \mathfrak{h} denote the Lie algebra of H. As in the first proof of Proposition 3.1, we have Lie algebra homomorphisms $\operatorname{Lie}(\psi): \mathfrak{t} \rightarrow \mathfrak{h}$ and $\operatorname{Lie}\left(\psi^{\dagger}\right)=\operatorname{Lie}(\psi)^{T}: \mathfrak{h} \rightarrow \mathfrak{t}$. The short exact sequence of Lie algebras $0 \rightarrow \mathfrak{h} \rightarrow \mathfrak{t} \rightarrow \mathfrak{k} \rightarrow 0$, with maps $\operatorname{Lie}\left(\psi^{\dagger}\right)$ and $\operatorname{Lie}\left(\phi^{\dagger}\right)$, exponentiates to a short exact sequence

$$
1 \longrightarrow H \xrightarrow{\psi^{\dagger}} T \xrightarrow{\phi^{\dagger}} K \longrightarrow 1 .
$$

Fix $x_{0} \in X$ and let $t_{0}=\mu\left(x_{0}\right) \in T$. Since the action of K on X is trivial and $\phi^{\dagger} \circ \mu: X \rightarrow K$ is a moment map, the preceeding lemma implies that $\phi^{\dagger} \circ \mu$ is constant. Thus, $\mu(x) t_{0}^{-1} \in \operatorname{Ker}\left(\phi^{\dagger}\right)=$ $\operatorname{Im}\left(\psi^{\dagger}\right)$ for any $x \in X$. Using the fact that ϕ^{\dagger} is injective, define

$$
\begin{aligned}
\mu_{H}: X & \rightarrow H \\
x & \mapsto\left(\phi^{\dagger}\right)^{-1}\left(\frac{\mu(x)}{t_{0}}\right)
\end{aligned}
$$

We show that μ_{H} is a moment map. Let $\xi \in \mathfrak{t}$. The vector field $v_{\text {Lie }(\psi)(\xi)}^{H}$ corresponding to the image of ξ in \mathfrak{h} coincides with the vector field v_{ξ}^{T} corresponding to ξ. Since Lie (ψ) is surjective, the result is a consequence of the following computation, which uses facts stated in the first proof of Proposition 3.1, and the left-invariance of θ_{T} :

$$
\begin{aligned}
\omega\left(v_{\operatorname{Lie}(\psi)(\xi)}^{H},-\right) & =\omega\left(v_{\xi}^{T},-\right)=\left\langle\mu^{*} \theta_{T}, \xi\right\rangle=\left\langle\mu_{H}^{*} \circ\left(\psi^{\dagger}\right)^{*} \circ L_{t_{0}}^{*} \theta_{T}, \xi\right\rangle=\left\langle\mu_{H}^{*} \circ\left(\psi^{\dagger}\right)^{*} \theta_{T}, \xi\right\rangle \\
& =\left\langle\mu_{H}^{*}\left(\operatorname{Lie}\left(\psi^{\dagger}\right)\left(\theta_{H}\right)\right), \xi\right\rangle=\left\langle\operatorname{Lie}\left(\phi^{\dagger}\right)\left(\mu_{H}^{*} \theta_{H}\right), \xi\right\rangle=\left\langle\mu_{H}^{*} \theta_{H}, \operatorname{Lie}(\phi)(\xi)\right\rangle .
\end{aligned}
$$

4 Example

There is an action of $T=\left(\mathbb{C}^{\times}\right)^{n}$ on the cotangent bundle $T^{*} \mathbb{C}^{n}$ by componentwise scaling: $(t \cdot$ $(p, \omega))_{i}=\left(t_{i} p_{i}, t_{i}^{-1} \omega_{i}\right)$. Precomposition by ϕ induces an action of K on $T^{*} \mathbb{C}^{n}$. Fix the following notation:

$$
\begin{gathered}
\mathcal{O}\left(T^{*} \mathbb{C}^{n}\right)=\mathbb{C}\left[x_{i}, \partial_{i}\right]=\mathbb{C}\left[x_{i}, \partial_{i} \mid i=1, \ldots, n\right], \quad \mathcal{O}\left(T^{*} \mathbb{C}^{n}\right)^{\circ}=\mathbb{C}\left[x_{i}, \partial_{i}\right]\left[\left(1+x_{i} \partial_{i}\right)^{-1}\right] . \\
\left(T^{*} \mathbb{C}^{n}\right)^{\circ}=\left\{(p, w) \in T^{*} \mathbb{C}^{n}: 1+p_{i} w_{i} \neq 0\right\} .
\end{gathered}
$$

Equip $\left(T^{*} \mathbb{C}^{n}\right)^{\circ}$ with the symplectic form $\omega=\sum_{i} \frac{d p_{i} \wedge d w_{i}}{1+p_{i} w_{i}}$.
Proposition 4.1. The following are group-valued moment maps:

$$
\begin{aligned}
\mu_{T}:\left(T^{*} \mathbb{C}^{n}\right)^{\circ} & \rightarrow T & \mu_{K}:\left(T^{*} \mathbb{C}^{n}\right)^{\circ} & \rightarrow K \\
(p, w) & \mapsto 1+p_{i} w_{i} & (p, w) & \mapsto\left(\prod_{i=1}^{n}\left(1+p_{i} w_{i}\right)^{m_{i j}}\right)_{j} .
\end{aligned}
$$

Proof. For $(p, w) \in\left(T^{*} \mathbb{C}^{n}\right)^{\circ}$, we write $\left\{\partial p_{i}, \partial w_{i} \mid i=1, \ldots, n\right\}$ and $\left\{d p_{i}, d w_{i} \mid i=1, \ldots, n\right\}$ for the natural bases of $2 n$-dimensional vector spaces $T_{(p, w)} T^{*} \mathbb{C}^{n}$ and $T_{(p, w)}^{*} T^{*} \mathbb{C}^{n}$. For $\xi \in \mathfrak{t}=\mathbb{C}^{n}$ we have $\left(v_{\xi}\right)_{(p, w)}=\sum_{i=1}^{n} \xi_{i} p_{i}\left(\partial p_{i}\right)-\xi_{i} w_{i}\left(\partial w_{i}\right)$. Therefore, for any $i=1, \ldots, n$,

$$
\omega_{(p, w)}\left(\left(v_{\xi}\right)_{(p, w)}, \partial p_{i}\right)=\omega_{(p, w)}\left(\sum_{i^{\prime}=1}^{n} \xi p_{i^{\prime}} \partial p_{i^{\prime}}-\xi w_{i^{\prime}} \partial w_{i^{\prime}}, \partial p_{i}\right)=\frac{d p_{i} \wedge d w_{i}}{1+p_{i} w_{i}}\left(-\xi w_{i} \partial w_{i}, \partial p_{i}\right)=\frac{\xi w_{i}}{1+p_{i} w_{i}}
$$

Similarly,

$$
\omega_{(p, w)}\left(\left(v_{\xi}\right)_{(p, w)}, \partial w_{i}\right)=\frac{\xi p_{i}}{1+p_{i} w_{i}} .
$$

Therefore,

$$
\omega_{(p, w)}\left(\left(v_{\xi}\right)_{(p, w)},-\right)=\sum_{i=1}^{n} \frac{\xi_{i} w_{i}\left(d p_{i}\right)+\xi_{i} p_{i}\left(d w_{i}\right)}{1+p_{i} w_{i}} .
$$

On the other hand, $\frac{\left(d \mu_{i}\right)(p, w)}{\mu_{i}(p, w)}=\frac{w_{i} d p_{i}+p_{i} d w_{i}}{1+p_{i} w_{i}}$. The claim for $\mu=\mu_{T}$ now follows, and the claim for μ_{K} is a consequence of Proposition 3.1.

References

[AMM] A. Alekseev, A. Malkin, E. Meinrenken. Lie group valued moment maps, Journal of Differential Geometry 48 (1998), 445-495.

[^0]: ${ }^{1}$ In fact, for any group homomorphism $\beta: G_{1} \rightarrow G_{2}$, it is easy to show that $\beta^{*} \theta_{G_{2}}=\operatorname{Lie}(\beta)\left(\theta_{G_{1}}\right)$.

