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In this document we state the definition of a torus-valued moment map, prove basic properties of
these maps, and give an example.

1 Review of ordinary moment maps

Let G be an algebraic group with Lie algebra g. Suppose G acts on a smooth symplectic variety
(X,ω) preserving the symplectic form.

Definition 1.1. For ξ ∈ g, define a vector field vξ on X by (vξ)x = d(ax)e(ξ) where ax : G→ X is
the map taking g to gx. We say that vξ is the vector field generated by the infinitesimal action of ξ.

Let 〈, 〉 : g× g→ C denote a choice of an invariant positive definite inner product on g which we
use to identify g ' g∗.

Definition 1.2. A moment map for the action of G on X is a smooth map φ : X → g that satisfies

ω(vξ,−) = 〈dφ, ξ〉

for any ξ ∈ g.

The equation can be written locally as ωx((vξ)x, v) = 〈(dφ)x(v), ξ〉, for x ∈ X and v ∈ TxX,
where we identify the tangent space Tξg with g itself.

2 Definition of torus-valued moment maps

Let Lg−1 : G→ G denote the left translation action of g−1 taking h to g−1h.

Definition 2.1. The left-invariant Maurer-Cartan form θ ∈ Ω1(G, g) is defined as

θg = d(Lg−1)g : TgG→ g = TeG.

The notion of a group-valued moment map X → G is introduced in [AMM]. Here we recall
the definition in the case that G = T is a complex algebraic torus, and X is a complex manifold.
Throughout, we consider the adjoint (equivalently, trivial) action of T on itself.

Definition 2.2. A torus-valued moment map is a smooth, T -equivariant map µ : X → T such that

ω(vξ,−) = 〈µ∗θ, ξ〉.

The corresponding homomorphism µ# : O(T )→ O(X) is called a comoment map.

To be explicit, the condition can be expressed locally as ωx((vξ)x, v) = 〈θµ(x)(dµx(v)), ξ〉, for
x ∈ X and v ∈ TxX.
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Proposition 2.3. Choose an isomorphism T ' (C×)n. A T -equivariant smooth map µ : X → T is
a group-valued moment map if and only if

ω(vξ,−) =
n∑
i=1

dµi
µi
ξi,

where µi is the composition of µ with the ith projection.

Proof. The Maurer-Cartan form for T can be written as [θg(v)]i = g−1i vi for g ∈ T ' (C×)n and
v ∈ TgT ' Cn, and the pairing 〈, 〉 can be taken to be the usual dot product.

Exercise: Check that the moment map condition is compatible with the the skew-symmetry of
ω.

Remark 2.4. We see from the reformulation above that a map µ : X → T is a torus-valued moment
map if and only if a branch of log ◦ µ is locally an ordinary moment map for the action of T on X.

3 Properties of torus-valued moment maps.

Let K = (C×)d and T = (C×)n be standard tori of rank d and n where d < n. Let φ : K ↪→ T be an
inclusion. Thus, φ has the form φ(k)i =

∏d
j=1 k

mij

j , i = 1, . . . , n, for some integers mij ∈ Z. There
is a ‘transpose’ map φ† : T → K defined by φ†(t)j =

∏n
i=1 t

mij

i . Let H = T/K be the quotient
torus. Denote by ψ : T → H the quotient map, and ψ† : H → K its transpose.

Proposition 3.1. If µ : X → T is a moment map, then the composition φ† ◦ µ is a moment map
for the action of K on X induced by φ.

First proof. Let k denote the Lie algebra of K and let Lie(φ) : k→ t, and Lie(φ†) = Lie(φ)T : t→ k
denote the induced Lie algebra homomorphisms. We use the same notation for the maps on 1-forms:

Lie(φ) : Ω1(−, k)→ Ω1(−, t), Lie(φ†) : Ω1(−, t)→ Ω1(−, k).

These maps commute with the pullback of 1-forms along smooth maps. Let θT and θK be the
Maurer-Cartan forms on T and K. Then1 (φ†)∗θK = Lie(φ†)(θT ).

For ζ ∈ k, write vKζ for the vector fields on X generated by ζ. In fact, vKζ coincides with the
vector field vTLie(ζ) generated by the image of ζ in t. The remainder of the proof is a computation:

〈(φ† ◦ µ)∗θK , ζ〉 = 〈µ∗ ◦ (φ†)∗θK , ζ〉 = 〈µ∗(Lie(φ†)(θT )), ζ〉 = 〈Lie(φ†)(µ∗θT ), ζ〉
= 〈µ∗θT ,Lie(φ)(ζ)〉 = ω(vTLie(ζ),−) = ω(vKζ ,−).

Second proof. Adopt the notation of the previous proof. Observe that (φ∗ζ)i =
∑d

j=1mijζj . We
have:

ω(vKζ ,−) = ω(vTLie(φ)ζ ,−) =
n∑
i=1

dµi
µi

(Lie(φ)(ζ))i =

n∑
i=1

d∑
j=1

mijζjdµi
µi

.

1In fact, for any group homomorphism β : G1 → G2, it is easy to show that β∗θG2 = Lie(β)(θG1).
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On the other hand, let (φ† ◦ µ)j denote the composition of φ† ◦ µ with the jth projection, so
(φ† ◦ µ)j(x) =

∏n
i=1 µi(x)mij . Then one computes:

d[(φ† ◦ µ)j ] =

n∑
i=1

mijµ
mij−1
i dµi

n∏
i′=1,i′ 6=i

µ
mi′j
i′ =

n∑
i=1

mij(φ
† ◦ µ)jdµi
µi

.

Therefore,
d∑
j=1

d[(φ† ◦ µ)j ]

(φ† ◦ µ)j
ζj =

n∑
i=1

d∑
j=1

mijζjdµi
µi

= ω(vKζ ,−).

The claim follows.

Remark 3.2. In the proposition and its proof, we did not use the hypothesis that φ is injective.
The same result, with the same proof, applies to an arbitrary homomorphism φ : T → K of tori.

Lemma 3.3. Suppose the action of T on X is trivial. Then µ : X → T is moment map if and only
if µ is a constant map.

Proof. In this case, the vector field vξ is the zero for any ξ ∈ t. Thus, µ is a moment map if and
only if µ∗θ = 0. This is equivalent to µi(x)−1(d(µi)x(v)) = 0 for all x ∈ X, v ∈ TxX, i = 1, . . . , n.
Since µi(x) is nonzero, the above holds if and only if d(µi)x = 0 for all x ∈ X, i = 1, . . . , n, i.e. if
and only if µi is constant for all i = 1, . . . , n. The lemma follows.

Lemma 3.4. Suppose µ : X → T is a moment map, and the action of K on X is trivial. Then there
is an induced action of H on X and a moment map µH : X → H that satisfies µ = µH ◦ φ† ◦ Lt0
for some t0 ∈ T .

In other words, the following diagram commutes:

X

µ

��

µH

ww
H

φ†
// T

Lt0

// T

Proof. Let h denote the Lie algebra of H. As in the first proof of Proposition 3.1, we have Lie
algebra homomorphisms Lie(ψ) : t → h and Lie(ψ†) = Lie(ψ)T : h → t. The short exact sequence
of Lie algebras 0→ h→ t→ k→ 0, with maps Lie(ψ†) and Lie(φ†), exponentiates to a short exact
sequence

1 −→ H
ψ†−→ T

φ†−→ K −→ 1.

Fix x0 ∈ X and let t0 = µ(x0) ∈ T . Since the action of K on X is trivial and φ† ◦ µ : X → K is
a moment map, the preceeding lemma implies that φ† ◦ µ is constant. Thus, µ(x)t−10 ∈ Ker(φ†) =
Im(ψ†) for any x ∈ X. Using the fact that φ† is injective, define

µH : X → H

x 7→ (φ†)−1
(
µ(x)

t0

)
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We show that µH is a moment map. Let ξ ∈ t. The vector field vHLie(ψ)(ξ) corresponding to the
image of ξ in h coincides with the vector field vTξ corresponding to ξ. Since Lie(ψ) is surjective, the
result is a consequence of the following computation, which uses facts stated in the first proof of
Proposition 3.1, and the left-invariance of θT :

ω(vHLie(ψ)(ξ),−) = ω(vTξ ,−) = 〈µ∗θT , ξ〉 = 〈µ∗H ◦ (ψ†)∗ ◦ L∗t0θT , ξ〉 = 〈µ∗H ◦ (ψ†)∗θT , ξ〉

= 〈µ∗H(Lie(ψ†)(θH)), ξ〉 = 〈Lie(φ†)(µ∗HθH), ξ〉 = 〈µ∗HθH ,Lie(φ)(ξ)〉.

4 Example

There is an action of T = (C×)n on the cotangent bundle T ∗Cn by componentwise scaling: (t ·
(p, ω))i = (tipi, t

−1
i ωi). Precomposition by φ induces an action of K on T ∗Cn. Fix the following

notation:

O(T ∗Cn) = C[xi, ∂i] = C[xi, ∂i | i = 1, . . . , n], O(T ∗Cn)◦ = C[xi, ∂i][(1 + xi∂i)
−1].

(T ∗Cn)◦ = {(p, w) ∈ T ∗Cn : 1 + piwi 6= 0}.
Equip (T ∗Cn)◦ with the symplectic form ω =

∑
i
dpi∧dwi

1+piwi
.

Proposition 4.1. The following are group-valued moment maps:

µT : (T ∗Cn)◦ → T µK : (T ∗Cn)◦ → K

(p, w) 7→ 1 + piwi (p, w) 7→ (
n∏
i=1

(1 + piwi)
mij )j .

Proof. For (p, w) ∈ (T ∗Cn)◦, we write {∂pi, ∂wi | i = 1, . . . , n} and {dpi, dwi | i = 1, . . . , n} for the
natural bases of 2n-dimensional vector spaces T(p,w)T ∗Cn and T ∗(p,w)T

∗Cn. For ξ ∈ t = Cn we have
(vξ)(p,w) =

∑n
i=1 ξipi(∂pi)− ξiwi(∂wi). Therefore, for any i = 1, . . . , n,

ω(p,w)((vξ)(p,w), ∂pi) = ω(p,w)(

n∑
i′=1

ξpi′∂pi′ − ξwi′∂wi′ , ∂pi) =
dpi ∧ dwi
1 + piwi

(−ξwi∂wi, ∂pi) =
ξwi

1 + piwi
.

Similarly,

ω(p,w)((vξ)(p,w), ∂wi) =
ξpi

1 + piwi
.

Therefore,

ω(p,w)((vξ)(p,w),−) =

n∑
i=1

ξiwi(dpi) + ξipi(dwi)

1 + piwi
.

On the other hand, (dµi)(p,w)

µi(p,w)
= widpi+pidwi

1+piwi
. The claim for µ = µT now follows, and the claim for

µK is a consequence of Proposition 3.1.
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