Torus-valued moment maps

IORDAN GANEV

October 2014

In this document we state the definition of a torus-valued moment map, prove basic properties of these maps, and give an example.

1 Review of ordinary moment maps

Let G be an algebraic group with Lie algebra \mathfrak{g} . Suppose G acts on a smooth symplectic variety (X, ω) preserving the symplectic form.

Definition 1.1. For $\xi \in \mathfrak{g}$, define a vector field v_{ξ} on X by $(v_{\xi})_x = d(a_x)_e(\xi)$ where $a_x : G \to X$ is the map taking g to gx. We say that v_{ξ} is the vector field generated by the infinitesimal action of ξ .

Let $\langle , \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ denote a choice of an invariant positive definite inner product on \mathfrak{g} which we use to identify $\mathfrak{g} \simeq \mathfrak{g}^*$.

Definition 1.2. A moment map for the action of G on X is a smooth map $\phi : X \to \mathfrak{g}$ that satisfies

$$\omega(v_{\xi}, -) = \langle d\phi, \xi \rangle$$

for any $\xi \in \mathfrak{g}$.

The equation can be written locally as $\omega_x((v_{\xi})_x, v) = \langle (d\phi)_x(v), \xi \rangle$, for $x \in X$ and $v \in T_x X$, where we identify the tangent space $T_{\xi}\mathfrak{g}$ with \mathfrak{g} itself.

2 Definition of torus-valued moment maps

Let $L_{q^{-1}}: G \to G$ denote the left translation action of g^{-1} taking h to $g^{-1}h$.

Definition 2.1. The left-invariant Maurer-Cartan form $\theta \in \Omega^1(G, \mathfrak{g})$ is defined as

$$\theta_g = d(L_{q^{-1}})_g : T_g G \to \mathfrak{g} = T_e G.$$

The notion of a group-valued moment map $X \to G$ is introduced in [AMM]. Here we recall the definition in the case that G = T is a complex algebraic torus, and X is a complex manifold. Throughout, we consider the adjoint (equivalently, trivial) action of T on itself.

Definition 2.2. A torus-valued moment map is a smooth, T-equivariant map $\mu: X \to T$ such that

$$\omega(v_{\xi}, -) = \langle \mu^* \theta, \xi \rangle.$$

The corresponding homomorphism $\mu^{\#} : \mathcal{O}(T) \to \mathcal{O}(X)$ is called a *comment map*.

To be explicit, the condition can be expressed locally as $\omega_x((v_{\xi})_x, v) = \langle \theta_{\mu(x)}(d\mu_x(v)), \xi \rangle$, for $x \in X$ and $v \in T_x X$.

Proposition 2.3. Choose an isomorphism $T \simeq (\mathbb{C}^{\times})^n$. A *T*-equivariant smooth map $\mu : X \to T$ is a group-valued moment map if and only if

$$\omega(v_{\xi}, -) = \sum_{i=1}^{n} \frac{d\mu_i}{\mu_i} \xi_i$$

where μ_i is the composition of μ with the *i*th projection.

Proof. The Maurer-Cartan form for T can be written as $[\theta_g(v)]_i = g_i^{-1}v_i$ for $g \in T \simeq (\mathbb{C}^{\times})^n$ and $v \in T_g T \simeq \mathbb{C}^n$, and the pairing \langle , \rangle can be taken to be the usual dot product.

Exercise: Check that the moment map condition is compatible with the skew-symmetry of ω .

Remark 2.4. We see from the reformulation above that a map $\mu : X \to T$ is a torus-valued moment map if and only if a branch of $\log \circ \mu$ is locally an ordinary moment map for the action of T on X.

3 Properties of torus-valued moment maps.

Let $K = (\mathbb{C}^{\times})^d$ and $T = (\mathbb{C}^{\times})^n$ be standard tori of rank d and n where d < n. Let $\phi : K \hookrightarrow T$ be an inclusion. Thus, ϕ has the form $\phi(k)_i = \prod_{j=1}^d k_j^{m_{ij}}$, $i = 1, \ldots, n$, for some integers $m_{ij} \in \mathbb{Z}$. There is a 'transpose' map $\phi^{\dagger} : T \to K$ defined by $\phi^{\dagger}(t)_j = \prod_{i=1}^n t_i^{m_{ij}}$. Let H = T/K be the quotient torus. Denote by $\psi : T \to H$ the quotient map, and $\psi^{\dagger} : H \to K$ its transpose.

Proposition 3.1. If $\mu : X \to T$ is a moment map, then the composition $\phi^{\dagger} \circ \mu$ is a moment map for the action of K on X induced by ϕ .

First proof. Let \mathfrak{k} denote the Lie algebra of K and let $\operatorname{Lie}(\phi) : \mathfrak{k} \to \mathfrak{t}$, and $\operatorname{Lie}(\phi^{\dagger}) = \operatorname{Lie}(\phi)^T : \mathfrak{t} \to \mathfrak{k}$ denote the induced Lie algebra homomorphisms. We use the same notation for the maps on 1-forms:

$$\operatorname{Lie}(\phi): \Omega^1(-,\mathfrak{k}) \to \Omega^1(-,\mathfrak{t}), \qquad \operatorname{Lie}(\phi^{\dagger}): \Omega^1(-,\mathfrak{t}) \to \Omega^1(-,\mathfrak{k})$$

These maps commute with the pullback of 1-forms along smooth maps. Let θ_T and θ_K be the Maurer-Cartan forms on T and K. Then¹ $(\phi^{\dagger})^* \theta_K = \text{Lie}(\phi^{\dagger})(\theta_T)$.

For $\zeta \in \mathfrak{k}$, write v_{ζ}^{K} for the vector fields on X generated by ζ . In fact, v_{ζ}^{K} coincides with the vector field $v_{\text{Lie}(\zeta)}^{T}$ generated by the image of ζ in \mathfrak{t} . The remainder of the proof is a computation:

$$\langle (\phi^{\dagger} \circ \mu)^{*} \theta_{K}, \zeta \rangle = \langle \mu^{*} \circ (\phi^{\dagger})^{*} \theta_{K}, \zeta \rangle = \langle \mu^{*} (\operatorname{Lie}(\phi^{\dagger})(\theta_{T})), \zeta \rangle = \langle \operatorname{Lie}(\phi^{\dagger})(\mu^{*} \theta_{T}), \zeta \rangle$$
$$= \langle \mu^{*} \theta_{T}, \operatorname{Lie}(\phi)(\zeta) \rangle = \omega(v_{\operatorname{Lie}(\zeta)}^{T}, -) = \omega(v_{\zeta}^{K}, -).$$

Second proof. Adopt the notation of the previous proof. Observe that $(\phi_*\zeta)_i = \sum_{j=1}^d m_{ij}\zeta_j$. We have:

$$\omega(v_{\zeta}^{K},-) = \omega(v_{\operatorname{Lie}(\phi)\zeta}^{T},-) = \sum_{i=1}^{n} \frac{d\mu_{i}}{\mu_{i}} (\operatorname{Lie}(\phi)(\zeta))_{i} = \sum_{i=1}^{n} \sum_{j=1}^{d} \frac{m_{ij}\zeta_{j}d\mu_{i}}{\mu_{i}}.$$

¹In fact, for any group homomorphism $\beta: G_1 \to G_2$, it is easy to show that $\beta^* \theta_{G_2} = \text{Lie}(\beta)(\theta_{G_1})$.

On the other hand, let $(\phi^{\dagger} \circ \mu)_j$ denote the composition of $\phi^{\dagger} \circ \mu$ with the *j*th projection, so $(\phi^{\dagger} \circ \mu)_j(x) = \prod_{i=1}^n \mu_i(x)^{m_{ij}}$. Then one computes:

$$d[(\phi^{\dagger} \circ \mu)_j] = \sum_{i=1}^n m_{ij} \mu_i^{m_{ij}-1} d\mu_i \prod_{i'=1, i' \neq i}^n \mu_{i'}^{m_{i'j}} = \sum_{i=1}^n \frac{m_{ij} (\phi^{\dagger} \circ \mu)_j d\mu_i}{\mu_i}.$$

Therefore,

$$\sum_{j=1}^{d} \frac{d[(\phi^{\dagger} \circ \mu)_j]}{(\phi^{\dagger} \circ \mu)_j} \zeta_j = \sum_{i=1}^{n} \sum_{j=1}^{d} \frac{m_{ij}\zeta_j d\mu_i}{\mu_i} = \omega(v_{\zeta}^K, -).$$

The claim follows.

Remark 3.2. In the proposition and its proof, we did not use the hypothesis that ϕ is injective. The same result, with the same proof, applies to an arbitrary homomorphism $\phi: T \to K$ of tori.

Lemma 3.3. Suppose the action of T on X is trivial. Then $\mu : X \to T$ is moment map if and only if μ is a constant map.

Proof. In this case, the vector field v_{ξ} is the zero for any $\xi \in \mathfrak{t}$. Thus, μ is a moment map if and only if $\mu^*\theta = 0$. This is equivalent to $\mu_i(x)^{-1}(d(\mu_i)_x(v)) = 0$ for all $x \in X$, $v \in T_x X$, $i = 1, \ldots, n$. Since $\mu_i(x)$ is nonzero, the above holds if and only if $d(\mu_i)_x = 0$ for all $x \in X$, $i = 1, \ldots, n$, i.e. if and only if μ_i is constant for all $i = 1, \ldots, n$. The lemma follows.

Lemma 3.4. Suppose $\mu : X \to T$ is a moment map, and the action of K on X is trivial. Then there is an induced action of H on X and a moment map $\mu_H : X \to H$ that satisfies $\mu = \mu_H \circ \phi^{\dagger} \circ L_{t_0}$ for some $t_0 \in T$.

In other words, the following diagram commutes:

$$H \xrightarrow{\mu_{H}} T \xrightarrow{\mu_{H}} T$$

Proof. Let \mathfrak{h} denote the Lie algebra of H. As in the first proof of Proposition 3.1, we have Lie algebra homomorphisms $\operatorname{Lie}(\psi) : \mathfrak{t} \to \mathfrak{h}$ and $\operatorname{Lie}(\psi^{\dagger}) = \operatorname{Lie}(\psi)^T : \mathfrak{h} \to \mathfrak{t}$. The short exact sequence of Lie algebras $0 \to \mathfrak{h} \to \mathfrak{t} \to \mathfrak{k} \to 0$, with maps $\operatorname{Lie}(\psi^{\dagger})$ and $\operatorname{Lie}(\phi^{\dagger})$, exponentiates to a short exact sequence sequence

$$1 \longrightarrow H \xrightarrow{\psi^{\intercal}} T \xrightarrow{\phi^{\intercal}} K \longrightarrow 1.$$

Fix $x_0 \in X$ and let $t_0 = \mu(x_0) \in T$. Since the action of K on X is trivial and $\phi^{\dagger} \circ \mu : X \to K$ is a moment map, the preceding lemma implies that $\phi^{\dagger} \circ \mu$ is constant. Thus, $\mu(x)t_0^{-1} \in \text{Ker}(\phi^{\dagger}) =$ $\text{Im}(\psi^{\dagger})$ for any $x \in X$. Using the fact that ϕ^{\dagger} is injective, define

$$\mu_H : X \to H$$
$$x \mapsto (\phi^{\dagger})^{-1} \left(\frac{\mu(x)}{t_0}\right)$$

We show that μ_H is a moment map. Let $\xi \in \mathfrak{t}$. The vector field $v_{\mathrm{Lie}(\psi)(\xi)}^H$ corresponding to the image of ξ in \mathfrak{h} coincides with the vector field v_{ξ}^T corresponding to ξ . Since $\mathrm{Lie}(\psi)$ is surjective, the result is a consequence of the following computation, which uses facts stated in the first proof of Proposition 3.1, and the left-invariance of θ_T :

$$\omega(v_{\mathrm{Lie}(\psi)(\xi)}^{H}, -) = \omega(v_{\xi}^{T}, -) = \langle \mu^{*}\theta_{T}, \xi \rangle = \langle \mu_{H}^{*} \circ (\psi^{\dagger})^{*} \circ L_{t_{0}}^{*}\theta_{T}, \xi \rangle = \langle \mu_{H}^{*} \circ (\psi^{\dagger})^{*}\theta_{T}, \xi \rangle$$
$$= \langle \mu_{H}^{*}(\mathrm{Lie}(\psi^{\dagger})(\theta_{H})), \xi \rangle = \langle \mathrm{Lie}(\phi^{\dagger})(\mu_{H}^{*}\theta_{H}), \xi \rangle = \langle \mu_{H}^{*}\theta_{H}, \mathrm{Lie}(\phi)(\xi) \rangle.$$

4 Example

There is an action of $T = (\mathbb{C}^{\times})^n$ on the cotangent bundle $T^*\mathbb{C}^n$ by componentwise scaling: $(t \cdot (p, \omega))_i = (t_i p_i, t_i^{-1} \omega_i)$. Precomposition by ϕ induces an action of K on $T^*\mathbb{C}^n$. Fix the following notation:

$$\mathcal{O}(T^*\mathbb{C}^n) = \mathbb{C}[x_i, \partial_i] = \mathbb{C}[x_i, \partial_i \mid i = 1, \dots, n], \qquad \mathcal{O}(T^*\mathbb{C}^n)^\circ = \mathbb{C}[x_i, \partial_i][(1 + x_i\partial_i)^{-1}]$$
$$(T^*\mathbb{C}^n)^\circ = \{(p, w) \in T^*\mathbb{C}^n : 1 + p_iw_i \neq 0\}.$$

Equip $(T^*\mathbb{C}^n)^\circ$ with the symplectic form $\omega = \sum_i \frac{dp_i \wedge dw_i}{1+p_i w_i}$.

Proposition 4.1. The following are group-valued moment maps:

$$\mu_T : (T^* \mathbb{C}^n)^\circ \to T \qquad \qquad \mu_K : (T^* \mathbb{C}^n)^\circ \to K$$
$$(p, w) \mapsto 1 + p_i w_i \qquad \qquad (p, w) \mapsto (\prod_{i=1}^n (1 + p_i w_i)^{m_{ij}})_j.$$

Proof. For $(p,w) \in (T^*\mathbb{C}^n)^\circ$, we write $\{\partial p_i, \partial w_i \mid i = 1, ..., n\}$ and $\{dp_i, dw_i \mid i = 1, ..., n\}$ for the natural bases of 2*n*-dimensional vector spaces $T_{(p,w)}T^*\mathbb{C}^n$ and $T^*_{(p,w)}T^*\mathbb{C}^n$. For $\xi \in \mathfrak{t} = \mathbb{C}^n$ we have $(v_{\xi})_{(p,w)} = \sum_{i=1}^n \xi_i p_i(\partial p_i) - \xi_i w_i(\partial w_i)$. Therefore, for any i = 1, ..., n,

$$\omega_{(p,w)}((v_{\xi})_{(p,w)},\partial p_i) = \omega_{(p,w)}(\sum_{i'=1}^n \xi p_{i'} \partial p_{i'} - \xi w_{i'} \partial w_{i'},\partial p_i) = \frac{dp_i \wedge dw_i}{1 + p_i w_i}(-\xi w_i \partial w_i,\partial p_i) = \frac{\xi w_i}{1 + p_i w_i}$$

Similarly,

$$\omega_{(p,w)}((v_{\xi})_{(p,w)},\partial w_i) = \frac{\xi p_i}{1 + p_i w_i}$$

Therefore,

$$\omega_{(p,w)}((v_{\xi})_{(p,w)}, -) = \sum_{i=1}^{n} \frac{\xi_{i} w_{i}(dp_{i}) + \xi_{i} p_{i}(dw_{i})}{1 + p_{i} w_{i}}.$$

On the other hand, $\frac{(d\mu_i)_{(p,w)}}{\mu_i(p,w)} = \frac{w_i dp_i + p_i dw_i}{1 + p_i w_i}$. The claim for $\mu = \mu_T$ now follows, and the claim for μ_K is a consequence of Proposition 3.1.

References

[AMM] A. Alekseev, A. Malkin, E. Meinrenken. Lie group valued moment maps, Journal of Differential Geometry 48 (1998), 445–495.