Notes for 'Representations of Finite Groups'

Iordan Ganev
13 August 2012
Eugene, Oregon

Contents

1 Introduction 2
2 Functions on finite sets 2
3 The group algebra $\mathbb{C}[G]$ 4
4 Induced representations 5
5 The Hecke algebra $\mathcal{H}(G, K)$ 7
6 Characters and the Frobenius character formula 9
7 Exercises 12

1 Introduction

The following notes were written in preparation for the first talk of a week-long workshop on categorical representation theory ${ }^{1}$. We focus on basic constructions in the representation theory of finite groups. The participants are likely familiar with much of the material in this talk; we hope that this review provides perspectives that will precipitate a better understanding of later talks of the workshop.

2 Functions on finite sets

Let X be a finite set of size n. Let $\mathbb{C}[X]$ denote the vector space of complex-valued functions on X. In what follows, $\mathbb{C}[X]$ will be endowed with various algebra structures, depending on the nature of X. The simplest algebra structure is pointwise multiplication, and in this case we can identify $\mathbb{C}[X]$ with the algebra $\mathbb{C} \times \mathbb{C} \times \cdots \times \mathbb{C}(n$ times $)$. To emphasize pointwise multiplication, we write ($\mathbb{C}[X]$, ptwise).

A $\mathbb{C}[X]$-module is the same as X-graded vector space, or a vector bundle on X. To see this, let V be a $\mathbb{C}[X]$-module and let $\delta_{x} \in \mathbb{C}[X]$ denote the delta function at x. Observe that

$$
\delta_{x} \cdot \delta_{y}= \begin{cases}\delta_{x} & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

It follows that each δ_{x} acts as a projection onto a subspace V_{x} of V and $V_{x} \cap V_{y}=0$ if $x \neq y$. Since $1=\sum_{x \in X} \delta_{x}$, we have that $V=\bigoplus_{x \in X} V_{x}$.

Let Y be another finite set and $\alpha: X \rightarrow Y$ a map of sets. The pullback α^{*} of α is defined by precomposition with α, while the pushforward α_{*} is defined using summation over the fibers of α :

$$
\begin{array}{ll}
\alpha^{*}: \mathbb{C}[Y] \rightarrow \mathbb{C}[X], & \alpha^{*}(f)=f \circ \alpha \\
\alpha_{*}: \mathbb{C}[X] \rightarrow \mathbb{C}[Y], & \alpha_{*}(f): y \mapsto \sum_{x \in \alpha^{-1}(y)} f(x)
\end{array}
$$

For finite sets X and Y, consider the linear map $\Phi: \mathbb{C}[X \times Y] \rightarrow \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y])$ taking $A \in \mathbb{C}[X \times Y]$ to the integral transform $f \mapsto \sum_{x \in X} A(x,-) f(x)$. In terms of the projections

the map Φ can be written as $A \mapsto\left(\pi_{2}\right)_{*}\left(A \cdot \pi_{1}^{*}(-)\right)$. On the other hand, given any linear map $\psi \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y])$, define an element of $\mathbb{C}[X \times Y]$ by sending (x, y) to $\psi\left(\delta_{x}\right)(y)$; thus we have a map $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) \rightarrow \mathbb{C}[X \times Y]$. It is straightforward to check that these are mutual inverse maps, hence

$$
\Phi: \mathbb{C}[X \times Y] \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y])
$$

[^0]is an isomorphism. It also true that $\mathbb{C}[X] \otimes \mathbb{C}[Y] \simeq \mathbb{C}[X \times Y]$.
In the case that $X=Y$, the set $\mathbb{C}[X \times X]$ can be given multiplication making Φ an isomorphism of algebras. Consider the projections

If A and B are complex-valued functions on $X \times X$, then define $A * B=\left(\pi_{1,3}\right)_{*}\left(\pi_{1,2}^{*} A \cdot \pi_{2,3}^{*} B\right)$. To be explicit:

$$
A * B(x, y)=\sum_{z \in X} A(x, z) B(z, y) .
$$

It is almost immediate from this last formula that $(\mathbb{C}[X \times X], *)$ is isomorphic to the matrix algebra $M_{n}(\mathbb{C}) \simeq \operatorname{End}_{\mathbb{C}}(\mathbb{C}[X])$.

Recall that two rings R and S are Morita equivalent if the category R-Mod of R-modules is equivalent to the category S-Mod of S-modules.

Proposition 1. The algebra $(\mathbb{C}[X \times X], *)$ is Morita equivalent to \mathbb{C}.

Proof. We may assume that $X=\{1,2, \ldots, n\}$ and identify the delta function at (i, j) in $\mathbb{C}[X \times X]$ with the matrix $E_{i, j} \in M_{n}(\mathbb{C})$ having 1 as its (i, j)-entry and zero elsewhere.

Consider the diagonal map $(\mathbb{C}[X]$, ptwise $) \rightarrow(\mathbb{C}[X \times X], *)$ sending δ_{i} to $E_{i, i}$. Since this map is an algebra homomorphism, any $\mathbb{C}[X \times X]$-module V also has the structure of a $\mathbb{C}[X]$-module, i.e. a vector bundle on X. Write $V=\bigoplus V_{i}$. We leave it as an exercise to check that $E_{i, j}$ gives an isomorphism between V_{i} and V_{j}. Therefore, the data of a $\mathbb{C}[X \times X]$-module is given by a single vector space.

Conversely, given a vector space W, let $V=X \times W$ be the trivial vector bundle on X. Then V carries a natural action of $\mathbb{C}[X \times X]$. Specifically, the basis element $E_{i, j}$ of $\mathbb{C}[X \times X]$ acts as the composition

$$
V \rightarrow V_{i}=\{i\} \times W \rightarrow\{j\} \times W=V_{j} \hookrightarrow V,
$$

where the first map is the identity on the fiber V_{i} over i and sends all other fibers to $0 \in V_{i} \simeq W$, the second map is the identity on W, and the third map is inclusion.

In this way, we have proven the standard result that all matrix algebras over \mathbb{C} are Morita equivalent to \mathbb{C} using somewhat geometric techniques. Now we consider a generalization. Let $\alpha: X \rightarrow Y$ be a surjective function between finite sets. Consider the fiber product

$$
X \times_{Y} X=\left\{\left(x_{1}, x_{2}\right) \in X \times X: \alpha\left(x_{1}\right)=\alpha\left(x_{2}\right)\right\} .
$$

Replacing ' \times ' with ' \times_{Y} ' in the diagram displaying projections from $X \times X \times X$, we observe that $\mathbb{C}\left[X \times_{Y} X\right]$ is a subalgebra of $(\mathbb{C}[X \times X], *)$. The corresponding subalgebra of $M_{n}(\mathbb{C})$ consists of block diagonal matrices of the following form: there is one block for each element y of Y, and its size is given by the size of $\alpha^{-1}(y)$. Arguments similar to those in the proof of Proposition 1 can be used to prove the following:

Proposition 2. The algebra $\left(\mathbb{C}\left[X \times_{Y} X\right], *\right)$ is Morita equivalent to $\mathbb{C}[Y]$.

3 The group algebra $\mathbb{C}[G]$

Let G be a finite group. Consider the diagram

where the middle arrow is the multiplication map on G. Endow $\mathbb{C}[G]$ with a convolution product: $f_{1} * f_{2}=m_{*}\left(\pi_{1}^{*} f_{1} \cdot \pi_{2}^{*} f_{2}\right)$, that is,

$$
f_{1} * f_{2}(g)=\sum_{x y=g} f_{1}(x) f_{2}(y)=\sum_{x \in G} f_{1}(x) f_{2}\left(x^{-1} g\right) .
$$

The group algebra of G is defined as $(\mathbb{C}[G], *)$. We make some elementary observations about the group algebra. A basis for $\mathbb{C}[G]$ is given by the delta functions $\left\{\delta_{g}: g \in G\right\}$, and these satisfy the relations $\delta_{g} * \delta_{h}=\delta_{g h}$. The multiplicative unit of $\mathbb{C}[G]$ is δ_{e}, where e is the identity element of G. In particular, every δ_{g} is invertible in $\mathbb{C}[G]$.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of G on a complex vector space V. Letting δ_{g} act by $\rho(g)$ and extending linearly, we see that V acquires the structure of a (left) $\mathbb{C}[G]$-module. Conversely, if V is a $\mathbb{C}[G]$-module, then V carries the structure of a representation of G, where g acts as δ_{g}. We conclude that there is a bijection between the $\mathbb{C}[G]$-module structures on V and the representations of G on V. In other words, there is an equivalence between the category $\mathbb{C}[G]$-Mod of $\mathbb{C}[G]$-modules and the category $\operatorname{Rep}(G)$ of complex representations of G. Moreover, this equivalence commutes with the forgetful functors:

Thinking of G as a finite set, recall that $\mathbb{C}[G \times G]$ has a matrix multiplication, which we now denote $\left(\mathbb{C}[G \times G]\right.$, matrix). The group G acts diagonally on $\mathbb{C}[G \times G]$ as $(g \cdot A)(h, k)=A\left(g^{-1} h, g^{-1} k\right)$. The following proposition allows us to realize the convolution product as a matrix multiplication.

Proposition 3. The space $\mathbb{C}[G \times G]^{G}$ of G-invariant functions is a subalgebra of $(\mathbb{C}[G \times G]$, matrix). There is an isomorphism of algebras $(\mathbb{C}[G], *)$ and $\left(\mathbb{C}[G \times G]^{G}\right.$, matrix).

Proof. The proof of the first statement is straightforward. We leave the reader to verify that the maps $\mathbb{C}[G] \rightarrow \mathbb{C}[G \times G]^{G}: f \mapsto\left[(h, k) \mapsto f\left(h^{-1} k\right)\right]$ and $\mathbb{C}[G \times G]^{G} \rightarrow \mathbb{C}[G]: \phi \mapsto\left[g \mapsto \phi\left(g^{-1}, 1\right)\right]$ are mutual inverses.

Observe that G acts on $\mathbb{C}[G]$ by conjugation: $f^{x}(g)=f\left(x^{-1} g x\right)$. The class functions on G, denoted $\mathbb{C}[G]^{G}$ or $\mathbb{C}[G / G]$ or $\mathbb{C}[G / \operatorname{ad} G]$, are the fixed points of this action:

$$
\mathbb{C}[G / G]=\left\{f \in \mathbb{C}[G]: f\left(x g x^{-1}\right)=f(g) \text { for all } x, g \in G\right\} .
$$

Recall that the cocenter, or abelianization, of an algebra A over \mathbb{C} is defined as the A-module $A /[A, A]$ where $[A, A]$ is the subspace generated by all elements of the form $a b-b a$. The map $\pi: A \rightarrow A /[A, A]$ from A to the cocenter has the following universal property. Suppose V is a vector space and $f: A \rightarrow V$ is a linear map with the property that $f(a b)=f(b a)$ for all $a, b \in A$, that is, f is a trace map. Then f factors uniquely through π. For this reason, the quotient map π is called the universal trace of A. If $\tilde{\pi}: A \rightarrow C$ is another map satisfying the same universal property as π, then we can identify C with the cocenter of A. We leave the proof of the following proposition as an exercise.

Proposition 4. The class functions $\mathbb{C}[G / G]$ are the center of the group algebra $\mathbb{C}[G]$. Moreover, the projection $\pi: \mathbb{C}[G] \rightarrow \mathbb{C}[G / G]$ defined on basis elements by

$$
\pi\left(\delta_{g}\right)=\frac{1}{|G|} \sum_{x \in G} \delta_{x g x^{-1}}
$$

is a universal trace, hence the class functions $\mathbb{C}[G / G]$ can be identified with the cocenter of the group algebra $\mathbb{C}[G]$.

Remark. In later talks we will see that the center of an algebra is its degree 0 Hochschild cohomology and the cocenter is its degree 0 Hochschild homology. Hence we have that $H H_{0}(\mathbb{C}[G])=$ $H H^{0}(\mathbb{C}[G])=\mathbb{C}[G / G]$.

4 Induced representations

Let G be a finite group and K a subgroup of G. In this case, $\mathbb{C}[K]$ is a subalgebra of $\mathbb{C}[G]$ and any representation of G is a representation of K by restriction. Thus we have a functor

$$
\operatorname{Res}_{G}^{K}: \operatorname{Rep}(G) \rightarrow \operatorname{Rep}(K)
$$

Natural questions are: does the functor $\operatorname{Res}_{G}^{K}$ have a left adjoint? a right adjoint? The answer to both questions turns out to be yes.

A left adjoint to $\operatorname{Res}_{G}^{K}$ is given by the induction functor

$$
\begin{aligned}
\operatorname{Ind}_{K}^{G}: \operatorname{Rep}(K) & \rightarrow \operatorname{Rep}(G) \\
W & \mapsto \mathbb{C}[G] \otimes_{\mathbb{C}[K]} W .
\end{aligned}
$$

Note that $\mathbb{C}[G]$ is a $\mathbb{C}[G]-\mathbb{C}[K]$-bimodule via multiplication in the group algebra and that $\operatorname{Ind}_{K}^{G}$ is an additive functor, i.e. $\operatorname{Ind}_{K}^{G}\left(W_{1} \oplus W_{2}\right) \simeq \operatorname{Ind}_{K}^{G}\left(W_{1}\right) \oplus \operatorname{Ind}_{K}^{G}\left(W_{2}\right)$. Thinking of representations as modules for the group algebra, it is straightforward to verify that there are indeed isomorphisms

$$
\operatorname{Hom}_{K}\left(W, \operatorname{Res}_{G}^{K}(V)\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G}(W), V\right)
$$

functorial in $V \in \operatorname{Rep}(G)$ and $W \in \operatorname{Rep}(K)$.
For example, let $\mathbb{C}_{\text {triv }}$ denote the trivial representation of K. The induced representation of G can be identified with the invariants of $\mathbb{C}[G]$ under the right action of K, or, equivalently, functions on the left cosets G / K. In symbols, $\operatorname{Ind}_{K}^{G}\left(\mathbb{C}_{\text {triv }}\right)=\mathbb{C}[G / K]$.

Now we describe a right adjoint to the restriction functor. Let $\sigma: K \rightarrow \mathrm{GL}(W)$ be a representation of K and define the coinduction functor $\operatorname{Coind}_{K}^{G}: \operatorname{Rep}(K) \rightarrow \operatorname{Rep}(G)$ as

$$
\operatorname{Coind}_{K}^{G}(W)=\{f: G \rightarrow W: f(k g)=\sigma(k) f(g) \text { for all } g \in G, k \in K\}
$$

The action of G is given by $(g \cdot f)(x)=f(x g)$. Equivalently, $\operatorname{Coind}_{K}^{G}(W)=\operatorname{Hom}_{K}(\mathbb{C}[G], W)$, where K acts on $\mathbb{C}[G]$ by left multiplication and G acts on $f: \mathbb{C}[G] \rightarrow W$ as $(g \cdot f)\left(\delta_{x}\right)=f\left(\delta_{x g}\right)$.

Proposition 5. Let V be a representation of G and W a representation of K. Then

$$
\operatorname{Hom}_{K}\left(\operatorname{Res}_{G}^{K}(V), W\right) \simeq \operatorname{Hom}_{G}\left(V, \operatorname{Coind}_{K}^{G}(W)\right) .
$$

Consequently, $\operatorname{Coind}_{K}^{G}$ is a right adjoint to $\operatorname{Res}_{G}^{K}$.

Proof. The vector space

$$
\begin{equation*}
\operatorname{Hom}(V, \operatorname{Hom}(\mathbb{C}[G], W)) \simeq \operatorname{Hom}(V \otimes \mathbb{C}[G], W) \simeq \operatorname{Hom}(\mathbb{C}[G], \operatorname{Hom}(V, W)) \tag{2}
\end{equation*}
$$

admits a left action of G and a right action of K. The two actions commute; taking $G \times K$-invariants on the far left side of equation 2 , we obtain:

$$
\operatorname{Hom}(V, \operatorname{Hom}(\mathbb{C}[G], W))^{G \times K}=\operatorname{Hom}_{G}\left(V, \operatorname{Hom}_{K}(\mathbb{C}[G], W)\right)=\operatorname{Hom}_{G}\left(V, \operatorname{Coind}_{K}^{G}(W)\right) .
$$

Taking $G \times K$-invariants on the far right side of equation 2, we obtain:

$$
\operatorname{Hom}(\mathbb{C}[G], \operatorname{Hom}(V, W))^{G \times K}=\operatorname{Hom}_{G}\left(\mathbb{C}[G], \operatorname{Hom}_{K}\left(\operatorname{Res}_{G}^{K}(V), W\right)\right)=\operatorname{Hom}_{K}\left(\operatorname{Res}_{G}^{K}(V), W\right)
$$

The proposition now follows.
Proposition 6. As representations of $G, \operatorname{Ind}_{K}^{G}(W)$ and $\operatorname{Coind}_{K}^{G}(W)$ are isomorphic.
Proof. Let $\sigma: K \rightarrow \mathrm{GL}(W)$ be the the group homomorphism giving the action of K on W. Define a linear map $\epsilon: \mathbb{C}[G] \times W \rightarrow \operatorname{Hom}(\mathbb{C}[G], W)$ by

$$
\epsilon\left(\delta_{x}, w\right)\left(\delta_{y}\right)= \begin{cases}\sigma(y x) w & \text { if } y x \in K \\ 0 & \text { otherwise }\end{cases}
$$

and extending linearly. One shows that the map $\epsilon\left(\delta_{x}, w\right)$ is K-equivariant and that ϵ is $\mathbb{C}[K]$-bilinear, so we obtain a map

$$
\epsilon: \mathbb{C}[G] \otimes_{\mathbb{C}[K]} W \rightarrow \operatorname{Hom}_{\mathbb{C}[K]}(\mathbb{C}[G], W) .
$$

It is not difficult to see that ϵ is G-equivariant.
Fix a set of left coset representatives $\left\{g_{1}, \ldots, g_{n}\right\}$ for K in G. Given $\phi \in \operatorname{Hom}_{\mathbb{C}[K]}(\mathbb{C}[G], W)$, a computation shows that $\epsilon\left(\sum_{i} \delta_{g_{i}} \otimes \phi\left(g_{i}^{-1}\right)\right)=\phi$, and this proves that ϵ is surjective. Note
that $\mathbb{C}[G] \otimes_{\mathbb{C}[K]} W=\bigoplus_{i} \delta_{g_{i}} \otimes W$; therefore, to show that ϵ is injective, it suffices to show that $\epsilon\left(\sum_{i} \delta_{g_{i}} \otimes w_{i}\right)$ is zero if and only if w_{i} is zero for all i. For each i, let $\alpha(i) \in\{1, \ldots, n\}$ be the unique index such that $g_{i}^{-1} K=g_{\alpha(i)} K$. Since the map $\epsilon\left(\sum_{i} \delta_{g_{i}} \otimes w_{i}\right)$ is K-equivariant, it is determined by its values on $\left\{\delta_{g_{j}}\right\}$. Direct computations verify that $\epsilon\left(\sum_{i} \delta_{g_{i}} \otimes w_{i}\right)=0$ if and only if for all j we have

$$
\sum_{\left\{i: g_{j} g_{i} \in K\right\}} \sigma\left(g_{j} g_{i}\right) w_{i}=0
$$

which happens if and only if $\sigma\left(g_{j} g_{\alpha(j)}\right) w_{\alpha(j)}=0$ for all j. The fact that $\sigma\left(g_{j} g_{\text {alpha }(j)}\right)$ is invertible and α is a bijection imply that $w_{i}=0$ for all i.

Consequently, we have a single induction functor that is left and right adjoint to the restriction functor. These adjunctions are known as Frobenius reciprocity:

$$
\begin{aligned}
& \operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G}(W), V\right) \simeq \operatorname{Hom}_{K}\left(W, \operatorname{Res}_{G}^{K}(V)\right) \\
& \operatorname{Hom}_{G}\left(V, \operatorname{Ind}_{K}^{G}(W)\right) \simeq \operatorname{Hom}_{K}\left(\operatorname{Res}_{G}^{K}(V), W\right)
\end{aligned}
$$

In particular, both restriction and induction are exact functors.
Finally, we give a geometric picture of induced representations. Let W be a representation of K. Consider the trivial bundle $G \times W \rightarrow G$ on G. Let $G \times{ }_{K} W$ be the 'balanced product' formed by taking the quotient of $G \times W$ by the equivalence relation $(g, w) \sim\left(g k, k^{-1} \cdot w\right)$ for any k in K. The map $G \times_{K} W \rightarrow G / K$ sending $[g, w]$ to the coset $g K$ is well-defined and makes $G \times_{K} W$ a vector bundle over G / K. The induced representation $\operatorname{Ind}_{K}^{G}(W)$ can be defined as global sections of $G \times_{K} W$. Note that $G \times_{K} W \rightarrow G / K$ is trivial W-bundle over G / K once a complete set of coset representatives is chosen. The group G acts on the G / K by changing coset representatives, and this gives an action of G on the space of sections. We leave the details to the reader.

5 The Hecke algebra $\mathcal{H}(G, K)$

As in the previous section, let G be a finite group and K a subgroup of G. Let V be a representation of G and define V^{K} as the subspace of K-invariant vectors:

$$
V^{K}=\{v \in V: k \cdot v=v \text { for all } k \in K\}
$$

Observe that taking K-invariants is functorial, so we have a functor $(-)^{K}: \operatorname{Rep}(G) \rightarrow \operatorname{Vec}_{\mathbb{C}}$. By Frobenius reciprocity, this functor is representable by $\mathbb{C}[G / K]$:

$$
V^{K}=\operatorname{Hom}_{K}\left(\mathbb{C}_{\text {triv }}, \operatorname{Res}(V)\right)=\operatorname{Hom}_{G}\left(\operatorname{Ind}\left(\mathbb{C}_{\text {triv }}\right), V\right)=\operatorname{Hom}_{G}(\mathbb{C}[G / K], V)
$$

where $\mathbb{C}_{\text {triv }}$ denotes the trivial representation of K. Since there is no danger of confusion, we have abbreviated the induction and restriction functors as Ind and Res. There is a natural right action of the algebra $\operatorname{End}_{G}(\mathbb{C}[G / K])$ on every $V^{K}=\operatorname{Hom}_{G}(\mathbb{C}[G / K], V)$ by precomposition:

$$
(\phi, \alpha) \mapsto \phi \circ \alpha
$$

for all $\alpha \in \operatorname{End}_{G}(\mathbb{C}[G / K])$ and $\phi \in \operatorname{Hom}_{G}(\mathbb{C}[G / K], V)$. The algebra $\mathcal{H}(G, K):=\operatorname{End}_{G}(\mathbb{C}[G / K])$ is known as the Hecke algebra of the pair (G, K). By the above comments, there is a factorization

The Yoneda lemma implies that $\mathcal{H}(G, K)^{\mathrm{op}} \simeq \operatorname{End}\left((-)^{K}\right)$.
Let $\langle\mathbb{C}[G / K]\rangle$ be the full subcategory of $\operatorname{Rep}(G)$ consisting of representations V such that $\operatorname{Hom}_{G}(\mathbb{C}[G / K], V) \neq 0$ (equivalently, $V^{K} \neq 0$), together with the zero representation. This is often referred to as the subcategory generated by $\mathbb{C}[G / K]$.

Proposition 7. There is an equivalence of categories $\langle\mathbb{C}[G / K]\rangle \simeq \mathcal{H}(G, K)$-Mod.

Proof. The Barr-Beck theorem provides one way to see this equivalence. Since the Barr-Beck theorem will feature in a later talk, the reader may wish to read this proof after learning the Barr-Beck theorem.

A left adjoint to the exact functor $(-)^{K}$ is the composition $\operatorname{Vec}_{\mathbb{C}} \rightarrow \operatorname{Rep}(K) \xrightarrow{\text { Ind }} \operatorname{Rep}(G)$ where the first functor is the inclusion of vector spaces as the full subcategory of trivial representations. The corresponding monad on $\mathrm{Vec}_{\mathbb{C}}$ is given by tensoring with $\mathcal{H}(G, K)$ since

$$
\mathbb{C} \mapsto\left(\operatorname{Ind}\left(\mathbb{C}_{\text {triv }}\right)\right)^{K}=\mathbb{C}[G / K]^{K}=\operatorname{Hom}(\mathbb{C}[G / K], \mathbb{C}[G / K])=\mathcal{H}(G, K)
$$

and extending additively. Since $V^{K} \neq 0$ for nonzero objects V of $\langle\mathbb{C}[G / K]\rangle$, the Barr-Beck theorem immediately implies the result.

Therefore, the Hecke algebra allows us to probe into the category of representations of G. If K is small, then many representations of G will have K-invariants, so knowledge of $\mathcal{H}(G, K)$ and its category of modules is more valuable. However, in this case $\mathcal{H}(G, K)$ may be more difficult to understand. If K is large, then G / K is small and $\mathcal{H}(G, K)$ may have a simpler structure, for example it may be commutative. The disadvantage is that in this case we may acquire less information about the category $\operatorname{Rep}(G)$.

Let ${ }^{K} \mathbb{C}[G]^{K}$ denote the left and right K-invariant functions in $\mathbb{C}[G]$. It is easy to see that ${ }^{K} \mathbb{C}[G]^{K}$ can be identified with functions on the double cosets $\mathbb{C}[K \backslash G / K]$. In certain contexts, the Hecke algebra $\mathcal{H}(G, K)$ is defined as $\mathbb{C}[K \backslash G / K]$; this is justified by the following proposition.

Proposition 8. The space ${ }^{K} \mathbb{C}[G]^{K}=\mathbb{C}[K \backslash G / K]$ is a subalgebra of $\mathbb{C}[G]$ isomorphic to $\mathcal{H}(G, K)$.
Instead of providing a detailed proof, we mention several ways to gain insight on the proposition. Recall that, in the definition of the multiplication in the group algebra, we considered a diagram with maps out of $G \times G$. The addition of appropriate quotients yields the following diagram, whose
maps are well-defined:

Here ' \times_{K} ' again denotes the balanced product, as defined in the previous section. One can use this diagram to deduce that $\mathbb{C}[K \backslash G / K]$ is an algebra under convolution.

In order to demonstrate the isomorphism of $\mathbb{C}[K \backslash G / K]$ with the Hecke algebra, we can use the definition of the Hecke algebra and the representability of the functor $(-)^{K}$ to obtain isomorphisms of vector spaces

$$
\mathcal{H}(G, K)=\operatorname{Hom}_{G}(\mathbb{C}[G / K], \mathbb{C}[G / K]) \simeq \mathbb{C}[G / K]^{K} \simeq \mathbb{C}[K \backslash G / K]
$$

that are in fact isomorphisms of algebras.
Alternatively, consider the diagonal action of G on $\mathbb{C}[G / K \times G / K]$. In a manner similar to the above discussion of the group algebra, there are algebra isomorphisms

$$
\mathcal{H}(G, K) \simeq \mathbb{C}[G / K \times G / K]^{G} \simeq \mathbb{C}[G \backslash(G / K \times G / K)] \simeq \mathbb{C}[K \backslash G / K]
$$

Here we use the (easily verified) fact that the orbits of $G / K \times G / K$ under the diagonal action of G can be identified with the double coset space $K \backslash G / K$.

Another approach is to use the idempotents: it is a general fact that in any algebra A with an idempotent element e, the set $e A e$ is a subalgebra isomorphic to $\operatorname{End}_{A}(A e)$. In our case, take $A=$ $\mathbb{C}[G]$ with the idempotent $e_{K}=\frac{1}{|K|} \sum_{k \in K} \delta_{k}$. Simple computations show that $\mathbb{C}[G / K]=\mathbb{C}[G] * e_{K}$ and $\mathbb{C}[K \backslash G / K]=e_{K} * \mathbb{C}[G] * e_{K}$. Hence $\operatorname{End}_{G}(\mathbb{C}[G / K]) \simeq \mathbb{C}[K \backslash G / K]$.

To conclude this section, we describe a more general formulation of the Hecke algebra. Let W be an irreducible representation of K. Define the Hecke algebra of the triple (G, K, W) as $\mathcal{H}(G, K, W)=\operatorname{End}_{G}(\operatorname{Ind}(W))$. Consider the functor $\operatorname{Rep}(G) \rightarrow \operatorname{Vec}_{\mathbb{C}}$ taking a representation V to its " W-isotypic component" under K, that is, the largest subrepresentation of $\operatorname{Res}(V)$ isomorphic to some number of copies of W. Using identical arguments as above, one can see that this functor is representable by $\operatorname{Ind}(W)$ and establishes an equivalence between that category of $\mathcal{H}(G, K, W)$ modules and the full subcategory $\langle\operatorname{Ind}(W)\rangle$ of $\operatorname{Rep}(G)$.

6 Characters and the Frobenius character formula

Let V be a finite dimensional representation of a finite group G. Consider the 'matrix coefficients' map

$$
\begin{aligned}
\phi: \operatorname{End}(V) \simeq V^{*} \otimes V & \rightarrow \mathbb{C}[G] \\
v^{*} \otimes v & \mapsto\left[g \mapsto\left\langle v^{*}, g \cdot v\right\rangle\right]
\end{aligned}
$$

The character of G on V is defined as the element $\chi_{V}:=\phi\left(\operatorname{Id}_{V}\right) \in \mathbb{C}[G]$. For any fixed basis $\left\{e_{i}\right\}$ of V, the element $\operatorname{Id}_{V} \in \operatorname{End}(V)$ corresponds to $\sum e_{i}^{*} \otimes e_{i} \in V^{*} \otimes V$. So

$$
\chi_{V}(g)=\sum_{i} e_{i}^{*}\left(g \cdot e_{i}\right)=\operatorname{tr}\left(e_{j}^{*}\left(g \cdot e_{i}\right)\right)=\operatorname{tr}(\rho(g))
$$

where $\rho(g)=\left(e_{j}^{*}\left(g \cdot e_{i}\right)\right)_{i, j}$ is the matrix giving the action of g on V in the basis $\left\{e_{i}\right\}$. Since the trace function on matricies is a class function, it follows that χ_{V} is also a class function, i.e. and element of $\mathbb{C}[G / G]$.

From now on, all representations of G are assumed to be finite dimensional. Let V_{1}, \ldots, V_{r} be the irreducible representations of G, with characters $\chi_{1}, \ldots, \chi_{r}$. We review some basic facts about characters without proof.

1. There is a non-degenerate Hermitian inner product on the space of class functions $\mathbb{C}[G / G]$ given by

$$
\langle\alpha, \beta\rangle=\frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)
$$

(This is nothing more than the 'dot product' that defines a non-degenerate Hermitian inner product on any finite dimensional complex vector space.)
2. The characters $\chi_{1}, \ldots, \chi_{r}$ form an orthonormal basis for $\mathbb{C}[G / G]$. In particular, the number of irreducible representations of a finite group equals the number of conjugacy classes. Since any representation of G decomposes as a direct sum of irreducibles, we have further that a representation is determined by its character.
3. Let V and U be representations of G. Then $\chi_{V \oplus U}=\chi_{V}+\chi_{U}$ and $\chi_{V \otimes U}=\chi_{V} \cdot \chi_{U}$ (pointwise). Also,

$$
\left\langle\chi_{V}, \chi_{U}\right\rangle=\operatorname{dim} \operatorname{Hom}_{G}(V, U)
$$

Let K be a subgroup of G. We use the notation ψ_{W} for the character of a representation W of K. Therefore, Frobenius reciprocity implies that

$$
\left\langle\chi_{\operatorname{Ind}(W)}, \chi_{V}\right\rangle=\left\langle\psi_{W}, \psi_{\operatorname{Res}(V)}\right\rangle \quad \text { and } \quad\left\langle\chi_{V}, \chi_{\operatorname{Ind}(W)}\right\rangle=\left\langle\psi_{\operatorname{Res}(V), \psi_{W}}\right\rangle
$$

4. As algebras, $\mathbb{C}[G] \simeq \bigoplus \operatorname{End}\left(V_{i}\right)$. The idempotents are

$$
e_{i}=\frac{\operatorname{dim} V_{i}}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \cdot \delta_{g} \in \mathbb{C}[G]
$$

for $1 \leq i \leq r$. On a representation U of G, the element e_{i} acts as a projection onto the isotypic component of U corresponding to V_{i}.

We conclude with a discussion of the Frobenius character formula. Let K be a subgroup of G. Then the following diagram commutes:

where the top map is the inclusion, the vertical maps are the quotients by the action of conjugation, and the bottom map sends the conjugacy class of an element k of K to its conjugacy class in G. We have induced maps

$$
\mathbb{C}[K / K] \xrightarrow{p^{*}} \mathbb{C}[K] \xrightarrow{i_{*}} \mathbb{C}[G] \xrightarrow{q_{*}} \mathbb{C}[G / G]
$$

defined as follows. The map p^{*} is the usual pullback, that is, precomposition with the quotient map p. The map i_{*} is defined on basis elements as $i_{*}\left(\delta_{k}\right)=[G: K] \delta_{k}$, so is a scaled version of the usual pushforward. Finally, the map q_{*} is the projection to class functions that we saw in section 3 ; it is defined on basis elements as

$$
q_{*}\left(\delta_{g}\right)=\frac{1}{|G|} \sum_{x \in G} \delta_{x g x^{-1}}
$$

Define the pushforward $\pi_{*}: \mathbb{C}[K / K] \rightarrow \mathbb{C}[G / G]$ to be the composition $q_{*} \circ i_{*} \circ p_{*}$. Explicity, π_{*} takes the form

$$
\begin{aligned}
\pi_{*}: \mathbb{C}[K / K] & \rightarrow \mathbb{C}[G / G] \\
f & \mapsto\left[g \mapsto \frac{1}{|K|} \sum_{x \in G} \dot{f}\left(x g x^{-1}\right)\right]
\end{aligned}
$$

where $\dot{f} \in \mathbb{C}[G]$ conincides with f on K and is 0 otherwise. If W is a representation of K with character ψ, then we abbreviate by $\operatorname{Ind}(\psi)$ the character of the induced representation $\operatorname{Ind}_{K}^{G}(W)$. The following result is known as the Frobenius character formula:

Proposition 9. Let ψ be the character of a representation W of K. Then $\operatorname{Ind}(\psi)=\pi_{*} \psi$. Explicitly,

$$
\operatorname{Ind}(\psi)(g)=\frac{1}{|K|} \sum_{x \in G} \dot{\psi}\left(x g x^{-1}\right),
$$

where $\dot{f} \in \mathbb{C}[G]$ conincides with f on K and is 0 otherwise.

Proof. Let $\eta \in \mathbb{C}[G / G]$ be arbitrary. Then

$$
\begin{aligned}
\left\langle\eta, \pi_{*} \psi\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \overline{\eta(g)} \cdot \pi_{*} \psi(g)=\frac{1}{|G||K|} \sum_{g \in G} \sum_{x \in G} \overline{\eta(g)} \cdot \dot{\psi}\left(x g x^{-1}\right) \\
& =\frac{1}{|G||K|} \sum_{g \in G} \sum_{k \in K} \sum_{\substack{x \in G \\
x g x^{-1}=k}} \overline{\eta(g)} \cdot \psi(k)=\frac{1}{|G||K|} \sum_{k \in K} \sum_{x \in G} \sum_{\substack{g \in G \\
g=x^{-1} k x}} \overline{\eta(g)} \cdot \psi(k) \\
& =\frac{1}{|G||K|} \sum_{k \in K} \sum_{x \in G} \overline{\eta\left(x^{-1} k x\right)} \cdot \psi(k)=\frac{1}{|G||K|} \sum_{k \in K} \sum_{x \in G} \overline{\eta(k)} \cdot \psi(k) \\
& =\frac{|G|}{|G||K|} \sum_{k \in K} \overline{\eta(k)} \cdot \psi(k)=\langle\operatorname{Res}(\eta), \psi\rangle=\langle\eta, \operatorname{Ind}(\psi)\rangle .
\end{aligned}
$$

The first three equalities follow from the definitions of $\langle\rangle,, \pi_{*} \psi$, and $\dot{\psi}$. The sixth equality uses the fact that η is a class function, and the last equality invokes Frobenius reciprocity. Since η is arbitrary, the result follows from the non-degeneracy of the inner product on $\mathbb{C}[G / G]$.

We describe another perspective on this result. Recall that the Grothendieck group of an (essentially small) abelian category \mathcal{C} is defined as the free abelian group on the set $\{[X]\}$ of isomorphism classes of objects of \mathcal{C} modulo the relation $[Y]=[X]+[Z]$ for any short exact sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{C}. The Grothendieck group of \mathcal{C} is denoted $K(\mathcal{C})$. If $F: \mathcal{C} \rightarrow \mathcal{D}$ is an additive functor between abelian categories, then F gives rise to a homomorphism $\tilde{F}: K(\mathcal{C}) \rightarrow K(\mathcal{D})$ between the Grothendieck groups defined by $\tilde{F}([X])=[F(X)]$.

The facts listed earlier in this section imply that the complexified Grothendieck group $K\left(\operatorname{Rep}_{f}(G)\right)$ $\otimes_{\mathbb{Z}} \mathbb{C}$ of the category $\operatorname{Rep}_{f}(G)$ of finite-dimensional complex representations of G can be identified with the vector space $\mathbb{C}[G / G]$ of class functions ${ }^{2}$. Passing from $\operatorname{Rep}_{f}(G)$ to $K\left(\operatorname{Rep}_{f}(G)\right) \otimes \mathbb{C}$ replaces a representation by its character. Now let K be a subgroup of G. The induction and restriction functors

give linear maps

$$
\mathbb{C}[K / K] \ldots \mathbb{C}[G / G] .
$$

We claim that these linear maps are π_{*} and π^{*}, where $\pi: K / K \rightarrow G / G$ is the function from earlier in this section. Here π^{*} dontes the ususal pullback, i.e. precomposition with π, whereas π_{*} is the (special) pushforward defined above. In other words, on the level of characters, $\operatorname{Ind}=\pi_{*}$ and Res $=\pi^{*}$. More precisely:

Proposition 10. Let V be a representation of G and W a representation of K. Then $\psi_{\operatorname{Res}(V)}=$ $\pi^{*}\left(\chi_{V}\right)$ and $\chi_{\operatorname{Ind}(W)}=\pi_{*}\left(\psi_{W}\right)$.

The first equality is easy since $\pi^{*}\left(\chi_{V}\right)=\left.\chi_{V}\right|_{K}$, while second equality is just Proposition 9 .

7 Exercises

1. Complete the proof of Proposition 1 by showing that $E_{i, j}$ gives an isomorphism between V_{i} and V_{j}. Prove Proposition 2 by adopting arguments from the proof of Proposition 1.
2. Let X and Y be finite sets. Show that $\mathbb{C}[X \times Y]=\mathbb{C}[X] \otimes_{\mathbb{C}} \mathbb{C}[Y]$. More generally, show that $\mathbb{C}\left[X \times_{Z} Y\right]=\mathbb{C}[X] \otimes_{\mathbb{C}[Z]} \mathbb{C}[Y]$ where Z is a finite set and with maps $X \rightarrow Z$ and $Y \rightarrow Z$.
3. Complete the proof of Proposition 3 by showing that the maps given in the text are mutual inverses.
4. Provide a proof for Propostion 4.
5. Let K be a subgroup of a finite group G and W a representation of K. Show that the representation of G on sections of the bundle $G \times_{K} W \rightarrow G / K$ is isomorphic to the representation $\operatorname{Coind}_{K}^{G}(W)\left(\right.$ and hence also to $\left.\operatorname{Ind}_{K}^{G}(W)\right)$.
6. Provide a detailed proof of Proposition 8.

[^1]7. Let V be a finite dimensional representation of G. This exercise gives another way to see that χ_{V} is a class function. Suppose first that V is irreducible. Use Schur's lemma to prove that $\operatorname{End}(V)^{G}=\mathbb{C} \cdot \operatorname{Id}_{V}$. Prove that the map $\phi: \operatorname{End}(V) \rightarrow \mathbb{C}[G]$ dicussed in the text is G-equivariant for the action of G on $\mathbb{C}[G]$ by conjugation, and conclude that $\phi\left(\operatorname{Id}_{V}\right)$ is a class function. Use the complete reducibility of finite dimensional representations to prove the result for arbitrary V.
8. If G acts on a set X, show that $\mathbb{C}[X]$ carries the structure of a representation of G. Assume X is finite. Prove that $\chi_{\mathbb{C}[X]}$ counts fixed points: $\chi_{\mathbb{C}[X]}(g)=\#\{x \in X: g \cdot x=x\}$. Observe that $\mathcal{H}(G, K)$ acts on $\mathbb{C}[X]^{K}=\mathbb{C}[K \backslash X]$.

Acknowledgements

Much of the content of these notes is inspired by a course on representation theory taught by David Ben-Zvi during Spring 2012, as well as individual conversations I have had with him. I am very grateful to him, and also to Lee Cohn, David Jordan, Hendrik Orem, and Pavel Safronov for many helpful discussions and suggestions. Special thanks to Alberto García-Raboso for a careful reading and insightful comments.

References

[1] D. Bump. Lie Groups. Springer, 2004.
[2] W. Fulton and J. Harris. Representation Theory: A First Course. Springer, 1991.

[^0]: ${ }^{1}$ The talk was given on 13 August 2012; these notes were last updated 31 August 2012.

[^1]: ${ }^{2}$ In fact, $\operatorname{Rep}_{f}(G)$ is a tensor category, so $K\left(\operatorname{Rep}_{f}(G)\right) \otimes \mathbb{C}$ is an algebra, and it is isomorphic to $(\mathbb{C}[G / G]$, ptwise $)$, but this extra structure is not relevant for the present discussion.

