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1 Introduction

The following notes were written in preparation for the first talk of a week-long workshop on
categorical representation theory1. We focus on basic constructions in the representation theory of
finite groups. The participants are likely familiar with much of the material in this talk; we hope
that this review provides perspectives that will precipitate a better understanding of later talks of
the workshop.

2 Functions on finite sets

Let X be a finite set of size n. Let C[X] denote the vector space of complex-valued functions on
X. In what follows, C[X] will be endowed with various algebra structures, depending on the nature
of X. The simplest algebra structure is pointwise multiplication, and in this case we can identify
C[X] with the algebra C×C× · · · ×C (n times). To emphasize pointwise multiplication, we write
(C[X], ptwise).

A C[X]-module is the same as X-graded vector space, or a vector bundle on X. To see this, let
V be a C[X]-module and let δx ∈ C[X] denote the delta function at x. Observe that

δx · δy =

{
δx if x = y
0 if x 6= y

It follows that each δx acts as a projection onto a subspace Vx of V and Vx ∩ Vy = 0 if x 6= y. Since
1 =

∑
x∈X δx, we have that V =

⊕
x∈X Vx.

Let Y be another finite set and α : X → Y a map of sets. The pullback α∗ of α is defined by
precomposition with α, while the pushforward α∗ is defined using summation over the fibers of α:

α∗ : C[Y ]→ C[X], α∗(f) = f ◦ α

α∗ : C[X]→ C[Y ], α∗(f) : y 7→
∑

x∈α−1(y)

f(x).

For finite sets X and Y , consider the linear map Φ : C[X × Y ] → HomC(C[X],C[Y ]) taking
A ∈ C[X × Y ] to the integral transform f 7→

∑
x∈X A(x,−)f(x). In terms of the projections

X × Y
π1

{{ww
ww

ww
ww

w
π2

##GG
GG
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GG

G

X Y

the map Φ can be written as A 7→ (π2)∗(A · π∗1(−)). On the other hand, given any linear map
ψ ∈ HomC(C[X],C[Y ]), define an element of C[X × Y ] by sending (x, y) to ψ(δx)(y); thus we have
a map HomC(C[X],C[Y ])→ C[X ×Y ]. It is straightforward to check that these are mutual inverse
maps, hence

Φ : C[X × Y ]
∼−→ HomC(C[X],C[Y ])

1The talk was given on 13 August 2012; these notes were last updated 31 August 2012.
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is an isomorphism. It also true that C[X]⊗ C[Y ] ' C[X × Y ].

In the case that X = Y , the set C[X ×X] can be given multiplication making Φ an isomorphism
of algebras. Consider the projections

X ×X ×X
π1,2

wwooooooooooo
π1,3

��

π2,3

''OOOOOOOOOOO

X ×X X ×X X ×X

If A and B are complex-valued functions on X ×X, then define A ∗B = (π1,3)∗(π
∗
1,2A · π∗2,3B). To

be explicit:
A ∗B(x, y) =

∑
z∈X

A(x, z)B(z, y).

It is almost immediate from this last formula that (C[X×X], ∗) is isomorphic to the matrix algebra
Mn(C) ' EndC(C[X]).

Recall that two rings R and S are Morita equivalent if the category R-Mod of R-modules is
equivalent to the category S-Mod of S-modules.

Proposition 1. The algebra (C[X ×X], ∗) is Morita equivalent to C.

Proof. We may assume that X = {1, 2, . . . , n} and identify the delta function at (i, j) in C[X ×X]
with the matrix Ei,j ∈Mn(C) having 1 as its (i, j)-entry and zero elsewhere.

Consider the diagonal map (C[X], ptwise) → (C[X × X], ∗) sending δi to Ei,i. Since this map
is an algebra homomorphism, any C[X × X]-module V also has the structure of a C[X]-module,
i.e. a vector bundle on X. Write V =

⊕
Vi. We leave it as an exercise to check that Ei,j gives an

isomorphism between Vi and Vj . Therefore, the data of a C[X × X]-module is given by a single
vector space.

Conversely, given a vector space W , let V = X ×W be the trivial vector bundle on X. Then V
carries a natural action of C[X ×X]. Specifically, the basis element Ei,j of C[X ×X] acts as the
composition

V � Vi = {i} ×W → {j} ×W = Vj ↪→ V,

where the first map is the identity on the fiber Vi over i and sends all other fibers to 0 ∈ Vi ' W ,
the second map is the identity on W , and the third map is inclusion.

In this way, we have proven the standard result that all matrix algebras over C are Morita
equivalent to C using somewhat geometric techniques. Now we consider a generalization. Let
α : X → Y be a surjective function between finite sets. Consider the fiber product

X ×Y X = {(x1, x2) ∈ X ×X : α(x1) = α(x2)}.

Replacing ‘×’ with ‘×Y ’ in the diagram displaying projections from X ×X ×X, we observe that
C[X ×Y X] is a subalgebra of (C[X ×X], ∗). The corresponding subalgebra of Mn(C) consists of
block diagonal matrices of the following form: there is one block for each element y of Y , and its
size is given by the size of α−1(y). Arguments similar to those in the proof of Proposition 1 can be
used to prove the following:
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Proposition 2. The algebra (C[X ×Y X], ∗) is Morita equivalent to C[Y ].

3 The group algebra C[G]

Let G be a finite group. Consider the diagram

G×G
π1

{{ww
ww

ww
ww

w
m

��

π2

##GG
GG

GG
GG

G

G G G

(1)

where the middle arrow is the multiplication map on G. Endow C[G] with a convolution product:
f1 ∗ f2 = m∗(π

∗
1f1 · π∗2f2), that is,

f1 ∗ f2(g) =
∑
xy=g

f1(x)f2(y) =
∑
x∈G

f1(x)f2(x
−1g).

The group algebra of G is defined as (C[G], ∗). We make some elementary observations about the
group algebra. A basis for C[G] is given by the delta functions {δg : g ∈ G}, and these satisfy the
relations δg ∗ δh = δgh. The multiplicative unit of C[G] is δe, where e is the identity element of G.
In particular, every δg is invertible in C[G].

Let ρ : G→ GL(V ) be a representation of G on a complex vector space V . Letting δg act by ρ(g)
and extending linearly, we see that V acquires the structure of a (left) C[G]-module. Conversely, if
V is a C[G]-module, then V carries the structure of a representation of G, where g acts as δg. We
conclude that there is a bijection between the C[G]-module structures on V and the representations
of G on V . In other words, there is an equivalence between the category C[G]-Mod of C[G]-modules
and the category Rep(G) of complex representations of G. Moreover, this equivalence commutes
with the forgetful functors:

C[G]-Mod ' //

forget %%KKKKKKKKKK
Rep(G)

forgetzzuuuuuuuuu

VecC

.

Thinking of G as a finite set, recall that C[G×G] has a matrix multiplication, which we now denote
(C[G × G], matrix). The group G acts diagonally on C[G × G] as (g · A)(h, k) = A(g−1h, g−1k).
The following proposition allows us to realize the convolution product as a matrix multiplication.

Proposition 3. The space C[G×G]G of G-invariant functions is a subalgebra of (C[G×G], matrix).
There is an isomorphism of algebras (C[G], ∗) and (C[G×G]G, matrix).

Proof. The proof of the first statement is straightforward. We leave the reader to verify that the
maps C[G] → C[G × G]G : f 7→ [(h, k) 7→ f(h−1k)] and C[G × G]G → C[G] : φ 7→ [g 7→ φ(g−1, 1)]
are mutual inverses.
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Observe that G acts on C[G] by conjugation: fx(g) = f(x−1gx). The class functions on G,
denoted C[G]G or C[G/G] or C[G/adG], are the fixed points of this action:

C[G/G] = {f ∈ C[G] : f(xgx−1) = f(g) for all x, g ∈ G}.

Recall that the cocenter, or abelianization, of an algebra A over C is defined as the A-module
A/[A,A] where [A,A] is the subspace generated by all elements of the form ab − ba. The map
π : A → A/[A,A] from A to the cocenter has the following universal property. Suppose V is a
vector space and f : A → V is a linear map with the property that f(ab) = f(ba) for all a, b ∈ A,
that is, f is a trace map. Then f factors uniquely through π. For this reason, the quotient map
π is called the universal trace of A. If π̃ : A → C is another map satisfying the same universal
property as π, then we can identify C with the cocenter of A. We leave the proof of the following
proposition as an exercise.

Proposition 4. The class functions C[G/G] are the center of the group algebra C[G]. Moreover,
the projection π : C[G]→ C[G/G] defined on basis elements by

π(δg) =
1

|G|
∑
x∈G

δxgx−1 .

is a universal trace, hence the class functions C[G/G] can be identified with the cocenter of the group
algebra C[G].

Remark. In later talks we will see that the center of an algebra is its degree 0 Hochschild coho-
mology and the cocenter is its degree 0 Hochschild homology. Hence we have that HH0(C[G]) =
HH0(C[G]) = C[G/G].

4 Induced representations

Let G be a finite group and K a subgroup of G. In this case, C[K] is a subalgebra of C[G] and any
representation of G is a representation of K by restriction. Thus we have a functor

ResKG : Rep(G)→ Rep(K).

Natural questions are: does the functor ResKG have a left adjoint? a right adjoint? The answer to
both questions turns out to be yes.

A left adjoint to ResKG is given by the induction functor

IndGK : Rep(K)→ Rep(G)

W 7→ C[G]⊗C[K] W.

Note that C[G] is a C[G]-C[K]-bimodule via multiplication in the group algebra and that IndGK is
an additive functor, i.e. IndGK(W1 ⊕W2) ' IndGK(W1)⊕ IndGK(W2). Thinking of representations as
modules for the group algebra, it is straightforward to verify that there are indeed isomorphisms

HomK(W,ResKG (V )) ' HomG(IndGK(W ), V )
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functorial in V ∈ Rep(G) and W ∈ Rep(K).

For example, let Ctriv denote the trivial representation of K. The induced representation of G
can be identified with the invariants of C[G] under the right action of K, or, equivalently, functions
on the left cosets G/K. In symbols, IndGK(Ctriv) = C[G/K].

Now we describe a right adjoint to the restriction functor. Let σ : K → GL(W ) be a representation
of K and define the coinduction functor CoindGK : Rep(K)→ Rep(G) as

CoindGK(W ) = {f : G→W : f(kg) = σ(k)f(g) for all g ∈ G, k ∈ K}.

The action of G is given by (g ·f)(x) = f(xg). Equivalently, CoindGK(W ) = HomK(C[G],W ), where
K acts on C[G] by left multiplication and G acts on f : C[G]→W as (g · f)(δx) = f(δxg).

Proposition 5. Let V be a representation of G and W a representation of K. Then

HomK(ResKG (V ),W ) ' HomG(V,CoindGK(W )).

Consequently, CoindGK is a right adjoint to ResKG .

Proof. The vector space

Hom(V,Hom(C[G],W )) ' Hom(V ⊗ C[G],W ) ' Hom(C[G],Hom(V,W )) (2)

admits a left action of G and a right action of K. The two actions commute; taking G×K-invariants
on the far left side of equation 2, we obtain:

Hom(V,Hom(C[G],W ))G×K = HomG(V,HomK(C[G],W )) = HomG(V,CoindGK(W )).

Taking G×K-invariants on the far right side of equation 2, we obtain:

Hom(C[G],Hom(V,W ))G×K = HomG(C[G],HomK(ResKG (V ),W )) = HomK(ResKG (V ),W ).

The proposition now follows.

Proposition 6. As representations of G, IndGK(W ) and CoindGK(W ) are isomorphic.

Proof. Let σ : K → GL(W ) be the the group homomorphism giving the action of K on W . Define
a linear map ε : C[G]×W → Hom(C[G],W ) by

ε(δx, w)(δy) =

{
σ(yx)w if yx ∈ K
0 otherwise

and extending linearly. One shows that the map ε(δx, w) isK-equivariant and that ε is C[K]-bilinear,
so we obtain a map

ε : C[G]⊗C[K] W → HomC[K](C[G],W ).

It is not difficult to see that ε is G-equivariant.

Fix a set of left coset representatives {g1, . . . , gn} for K in G. Given φ ∈ HomC[K](C[G],W ),
a computation shows that ε(

∑
i δgi ⊗ φ(g−1i )) = φ, and this proves that ε is surjective. Note
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that C[G] ⊗C[K] W =
⊕

i δgi ⊗W ; therefore, to show that ε is injective, it suffices to show that
ε(
∑

i δgi⊗wi) is zero if and only if wi is zero for all i. For each i, let α(i) ∈ {1, . . . , n} be the unique
index such that g−1i K = gα(i)K. Since the map ε(

∑
i δgi ⊗wi) is K-equivariant, it is determined by

its values on {δgj}. Direct computations verify that ε(
∑

i δgi ⊗ wi) = 0 if and only if for all j we
have ∑

{i:gjgi∈K}

σ(gjgi)wi = 0

which happens if and only if σ(gjgα(j))wα(j) = 0 for all j. The fact that σ(gjg alpha(j)) is invertible
and α is a bijection imply that wi = 0 for all i.

Consequently, we have a single induction functor that is left and right adjoint to the restriction
functor. These adjunctions are known as Frobenius reciprocity:

HomG(IndGK(W ), V ) ' HomK(W,ResKG (V ))

HomG(V, IndGK(W )) ' HomK(ResKG (V ),W ).

In particular, both restriction and induction are exact functors.

Finally, we give a geometric picture of induced representations. Let W be a representation of K.
Consider the trivial bundle G×W → G on G. Let G×K W be the ‘balanced product’ formed by
taking the quotient of G ×W by the equivalence relation (g, w) ∼ (gk, k−1 · w) for any k in K.
The map G ×K W → G/K sending [g, w] to the coset gK is well-defined and makes G ×K W a
vector bundle over G/K. The induced representation IndGK(W ) can be defined as global sections of
G ×K W . Note that G ×K W → G/K is trivial W -bundle over G/K once a complete set of coset
representatives is chosen. The group G acts on the G/K by changing coset representatives, and
this gives an action of G on the space of sections. We leave the details to the reader.

5 The Hecke algebra H(G,K)

As in the previous section, let G be a finite group and K a subgroup of G. Let V be a representation
of G and define V K as the subspace of K-invariant vectors:

V K = {v ∈ V : k · v = v for all k ∈ K}.

Observe that taking K-invariants is functorial, so we have a functor (−)K : Rep(G) → VecC. By
Frobenius reciprocity, this functor is representable by C[G/K]:

V K = HomK(Ctriv,Res(V )) = HomG(Ind(Ctriv), V ) = HomG(C[G/K], V ),

where Ctriv denotes the trivial representation of K. Since there is no danger of confusion, we have
abbreviated the induction and restriction functors as Ind and Res. There is a natural right action
of the algebra EndG(C[G/K]) on every V K = HomG(C[G/K], V ) by precomposition:

(φ, α) 7→ φ ◦ α
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for all α ∈ EndG(C[G/K]) and φ ∈ HomG(C[G/K], V ). The algebra H(G,K) := EndG(C[G/K]) is
known as the Hecke algebra of the pair (G,K). By the above comments, there is a factorization

Rep(G)
(−)K //

''OOOOOOOOOOO
VecC

H(G,K)-Mod
forget

88ppppppppppp

.

The Yoneda lemma implies that H(G,K)op ' End((−)K).

Let 〈C[G/K]〉 be the full subcategory of Rep(G) consisting of representations V such that
HomG(C[G/K], V ) 6= 0 (equivalently, V K 6= 0), together with the zero representation. This is
often referred to as the subcategory generated by C[G/K].

Proposition 7. There is an equivalence of categories 〈C[G/K]〉 ' H(G,K)-Mod.

Proof. The Barr-Beck theorem provides one way to see this equivalence. Since the Barr-Beck
theorem will feature in a later talk, the reader may wish to read this proof after learning the
Barr-Beck theorem.

A left adjoint to the exact functor (−)K is the composition VecC → Rep(K)
Ind−→ Rep(G) where

the first functor is the inclusion of vector spaces as the full subcategory of trivial representations.
The corresponding monad on VecC is given by tensoring with H(G,K) since

C 7→ (Ind(Ctriv))K = C[G/K]K = Hom(C[G/K],C[G/K]) = H(G,K)

and extending additively. Since V K 6= 0 for nonzero objects V of 〈C[G/K]〉, the Barr-Beck theorem
immediately implies the result.

Therefore, the Hecke algebra allows us to probe into the category of representations of G. If
K is small, then many representations of G will have K-invariants, so knowledge of H(G,K) and
its category of modules is more valuable. However, in this case H(G,K) may be more difficult to
understand. IfK is large, then G/K is small andH(G,K) may have a simpler structure, for example
it may be commutative. The disadvantage is that in this case we may acquire less information about
the category Rep(G).

Let KC[G]K denote the left and right K-invariant functions in C[G]. It is easy to see that KC[G]K

can be identified with functions on the double cosets C[K\G/K]. In certain contexts, the Hecke
algebra H(G,K) is defined as C[K\G/K]; this is justified by the following proposition.

Proposition 8. The space KC[G]K = C[K\G/K] is a subalgebra of C[G] isomorphic to H(G,K).

Instead of providing a detailed proof, we mention several ways to gain insight on the proposition.
Recall that, in the definition of the multiplication in the group algebra, we considered a diagram
with maps out of G×G. The addition of appropriate quotients yields the following diagram, whose
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maps are well-defined:

K\G×K G/K
π1

wwnnnnnnnnnnn
m

��

π2

''PPPPPPPPPPP

K\G/K K\G/K K\G/K

Here ‘×K ’ again denotes the balanced product, as defined in the previous section. One can use this
diagram to deduce that C[K\G/K] is an algebra under convolution.

In order to demonstrate the isomorphism of C[K\G/K] with the Hecke algebra, we can use the
definition of the Hecke algebra and the representability of the functor (−)K to obtain isomorphisms
of vector spaces

H(G,K) = HomG(C[G/K],C[G/K]) ' C[G/K]K ' C[K\G/K],

that are in fact isomorphisms of algebras.

Alternatively, consider the diagonal action of G on C[G/K × G/K]. In a manner similar to the
above discussion of the group algebra, there are algebra isomorphisms

H(G,K) ' C[G/K ×G/K]G ' C[G\(G/K ×G/K)] ' C[K\G/K].

Here we use the (easily verified) fact that the orbits of G/K ×G/K under the diagonal action of G
can be identified with the double coset space K\G/K.

Another approach is to use the idempotents: it is a general fact that in any algebra A with an
idempotent element e, the set eAe is a subalgebra isomorphic to EndA(Ae). In our case, take A =
C[G] with the idempotent eK = 1

|K|
∑

k∈K δk. Simple computations show that C[G/K] = C[G]∗ eK
and C[K\G/K] = eK ∗ C[G] ∗ eK . Hence EndG(C[G/K]) ' C[K\G/K].

To conclude this section, we describe a more general formulation of the Hecke algebra. Let
W be an irreducible representation of K. Define the Hecke algebra of the triple (G,K,W ) as
H(G,K,W ) = EndG(Ind(W )). Consider the functor Rep(G)→ VecC taking a representation V to
its “W -isotypic component” under K, that is, the largest subrepresentation of Res(V ) isomorphic
to some number of copies of W . Using identical arguments as above, one can see that this functor
is representable by Ind(W ) and establishes an equivalence between that category of H(G,K,W )-
modules and the full subcategory 〈Ind(W )〉 of Rep(G).

6 Characters and the Frobenius character formula

Let V be a finite dimensional representation of a finite group G. Consider the ‘matrix coefficients’
map

φ : End(V ) ' V ∗ ⊗ V → C[G]

v∗ ⊗ v 7→ [g 7→ 〈v∗, g · v〉].
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The character of G on V is defined as the element χV := φ(IdV ) ∈ C[G]. For any fixed basis {ei}
of V , the element IdV ∈ End(V ) corresponds to

∑
e∗i ⊗ ei ∈ V ∗ ⊗ V . So

χV (g) =
∑
i

e∗i (g · ei) = tr(e∗j (g · ei)) = tr(ρ(g))

where ρ(g) = (e∗j (g · ei))i,j is the matrix giving the action of g on V in the basis {ei}. Since the
trace function on matricies is a class function, it follows that χV is also a class function, i.e. and
element of C[G/G].

From now on, all representations of G are assumed to be finite dimensional. Let V1, . . . , Vr be
the irreducible representations of G, with characters χ1, . . . , χr. We review some basic facts about
characters without proof.

1. There is a non-degenerate Hermitian inner product on the space of class functions C[G/G]
given by

〈α, β〉 =
1

|G|
∑
g∈G

α(g)β(g).

(This is nothing more than the ‘dot product’ that defines a non-degenerate Hermitian inner
product on any finite dimensional complex vector space.)

2. The characters χ1, . . . , χr form an orthonormal basis for C[G/G]. In particular, the number
of irreducible representations of a finite group equals the number of conjugacy classes. Since
any representation of G decomposes as a direct sum of irreducibles, we have further that a
representation is determined by its character.

3. Let V and U be representations of G. Then χV⊕U = χV +χU and χV⊗U = χV ·χU (pointwise).
Also,

〈χV , χU 〉 = dimHomG(V,U).

Let K be a subgroup of G. We use the notation ψW for the character of a representation W
of K. Therefore, Frobenius reciprocity implies that

〈χInd(W ), χV 〉 = 〈ψW , ψRes(V )〉 and 〈χV , χInd(W )〉 = 〈ψRes(V ),ψW
〉.

4. As algebras, C[G] '
⊕

End(Vi). The idempotents are

ei =
dimVi
|G|

∑
g∈G

χi(g) · δg ∈ C[G]

for 1 ≤ i ≤ r. On a representation U of G, the element ei acts as a projection onto the isotypic
component of U corresponding to Vi.

We conclude with a discussion of the Frobenius character formula. Let K be a subgroup of G.
Then the following diagram commutes:

K
i //

p

��

G

q

��
K/K

π // G/G
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where the top map is the inclusion, the vertical maps are the quotients by the action of conjugation,
and the bottom map sends the conjugacy class of an element k of K to its conjugacy class in G.
We have induced maps

C[K/K]
p∗−→ C[K]

i∗−→ C[G]
q∗−→ C[G/G]

defined as follows. The map p∗ is the usual pullback, that is, precomposition with the quotient map
p. The map i∗ is defined on basis elements as i∗(δk) = [G : K]δk, so is a scaled version of the usual
pushforward. Finally, the map q∗ is the projection to class functions that we saw in section 3; it is
defined on basis elements as

q∗(δg) =
1

|G|
∑
x∈G

δxgx−1 .

Define the pushforward π∗ : C[K/K] → C[G/G] to be the composition q∗ ◦ i∗ ◦ p∗. Explicity, π∗
takes the form

π∗ : C[K/K]→ C[G/G]

f 7→ [g 7→ 1

|K|
∑
x∈G

ḟ(xgx−1)]

where ḟ ∈ C[G] conincides with f on K and is 0 otherwise. If W is a representation of K with
character ψ, then we abbreviate by Ind(ψ) the character of the induced representation IndGK(W ).
The following result is known as the Frobenius character formula:

Proposition 9. Let ψ be the character of a representation W of K. Then Ind(ψ) = π∗ψ. Explicitly,

Ind(ψ)(g) =
1

|K|
∑
x∈G

ψ̇(xgx−1),

where ḟ ∈ C[G] conincides with f on K and is 0 otherwise.

Proof. Let η ∈ C[G/G] be arbitrary. Then

〈η, π∗ψ〉 =
1

|G|
∑
g∈G

η(g) · π∗ψ(g) =
1

|G||K|
∑
g∈G

∑
x∈G

η(g) · ψ̇(xgx−1)

=
1

|G||K|
∑
g∈G

∑
k∈K

∑
x∈G

xgx−1=k

η(g) · ψ(k) =
1

|G||K|
∑
k∈K

∑
x∈G

∑
g∈G

g=x−1kx

η(g) · ψ(k)

=
1

|G||K|
∑
k∈K

∑
x∈G

η(x−1kx) · ψ(k) =
1

|G||K|
∑
k∈K

∑
x∈G

η(k) · ψ(k)

=
|G|
|G||K|

∑
k∈K

η(k) · ψ(k) = 〈Res(η), ψ〉 = 〈η, Ind(ψ)〉.

The first three equalities follow from the definitions of 〈, 〉, π∗ψ, and ψ̇. The sixth equality uses
the fact that η is a class function, and the last equality invokes Frobenius reciprocity. Since η is
arbitrary, the result follows from the non-degeneracy of the inner product on C[G/G].
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We describe another perspective on this result. Recall that the Grothendieck group of an
(essentially small) abelian category C is defined as the free abelian group on the set {[X]} of
isomorphism classes of objects of C modulo the relation [Y ] = [X]+[Z] for any short exact sequence
0 → X → Y → Z → 0 in C. The Grothendieck group of C is denoted K(C). If F : C → D is an
additive functor between abelian categories, then F gives rise to a homomorphism F̃ : K(C)→ K(D)
between the Grothendieck groups defined by F̃ ([X]) = [F (X)].

The facts listed earlier in this section imply that the complexified Grothendieck groupK(Repf (G))
⊗Z C of the category Repf (G) of finite-dimensional complex representations of G can be identified
with the vector space C[G/G] of class functions2. Passing from Repf (G) toK(Repf (G))⊗C replaces
a representation by its character. Now let K be a subgroup of G. The induction and restriction
functors

Repf (K)
Ind -- Repf (G)
Res

mm

give linear maps
C[K/K]

-- C[G/G]mm .

We claim that these linear maps are π∗ and π∗, where π : K/K → G/G is the function from
earlier in this section. Here π∗ dontes the ususal pullback, i.e. precomposition with π, whereas π∗
is the (special) pushforward defined above. In other words, on the level of characters, Ind = π∗ and
Res = π∗. More precisely:

Proposition 10. Let V be a representation of G and W a representation of K. Then ψRes(V ) =
π∗(χV ) and χInd(W ) = π∗(ψW ).

The first equality is easy since π∗(χV ) = χV |K , while second equality is just Proposition 9.

7 Exercises

1. Complete the proof of Proposition 1 by showing that Ei,j gives an isomorphism between Vi
and Vj . Prove Proposition 2 by adopting arguments from the proof of Proposition 1.

2. Let X and Y be finite sets. Show that C[X × Y ] = C[X]⊗C C[Y ]. More generally, show that
C[X ×Z Y ] = C[X]⊗C[Z] C[Y ] where Z is a finite set and with maps X → Z and Y → Z.

3. Complete the proof of Proposition 3 by showing that the maps given in the text are mutual
inverses.

4. Provide a proof for Propostion 4.

5. Let K be a subgroup of a finite group G and W a representation of K. Show that the repre-
sentation of G on sections of the bundle G×KW → G/K is isomorphic to the representation
CoindGK(W ) (and hence also to IndGK(W )).

6. Provide a detailed proof of Proposition 8.
2In fact, Repf (G) is a tensor category, so K(Repf (G))⊗C is an algebra, and it is isomorphic to (C[G/G], ptwise),

but this extra structure is not relevant for the present discussion.
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7. Let V be a finite dimensional representation of G. This exercise gives another way to see
that χV is a class function. Suppose first that V is irreducible. Use Schur’s lemma to prove
that End(V )G = C · IdV . Prove that the map φ : End(V ) → C[G] dicussed in the text is
G-equivariant for the action of G on C[G] by conjugation, and conclude that φ(IdV ) is a
class function. Use the complete reducibility of finite dimensional representations to prove the
result for arbitrary V .

8. If G acts on a set X, show that C[X] carries the structure of a representation of G. Assume
X is finite. Prove that χC[X] counts fixed points: χC[X](g) = #{x ∈ X : g · x = x}. Observe
that H(G,K) acts on C[X]K = C[K\X].
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