The cover $SU(2) \rightarrow SO(3)$ and related topics

Iordan Ganev

December 2011

Abstract

The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of the fundamental group of SO(n). We also show how $SU(2) \times SU(2)$ is a double cover of SO(4). Finally, we argue that O(4) is generated by the left and right multiplication maps together with quaternionic conjugation.

1 A brief review of the quaternions \mathbb{H}

Let \mathbb{H} be the free \mathbb{R} -module on the set $\{1, i, j, k\}$. Therefore, \mathbb{H} is a four-dimensional vector space in which an arbitrary element x can be written as x = a + bi + cj + dk for some real numbers a, b, c, and d. Define an algebra structure on \mathbb{H} by extending linearly the multiplication of the finite group of quaternions

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

By a slight abuse of terminology, elements of \mathbb{H} are called *quaternions*. The conjugate of an element x = a + bi + cj + dk of \mathbb{H} is defined as $\bar{x} = a - bi - cj - dk$, and the map $x \mapsto x\bar{x}$ defines a norm on \mathbb{H} . The subspace Im \mathbb{H} of purely imaginary quaternions is the subspace with a = 0. The unit sphere in \mathbb{H} , i.e. the *unit quaternions*, forms a multiplicative group, denoted U, that is diffeomorphic to S^3 .

Lemma 1. The center of \mathbb{H} is Span{1}.

Proof. It is clear that Span{1} is contained in the center since the center of Q_8 is $\{\pm 1\}$. Suppose x = a + bi + cj + dk is in the center. Then xi = ix implies that

$$ai - b - ck + dj = ai - b + ck - dj,$$

so c = d = 0 and x = a + bi. Now, xj = jx implies that

$$aj + bk = aj - bk.$$

Hence b = 0 and $x = a \in \text{Span}\{1\}$.

2 $U \simeq SU(2)$

We argue that, as Lie groups, U is isomorphic to the special unitary group SU(2). For each $g \in U$, there is a map

$$H \simeq \mathbb{R}^4 \to H \simeq \mathbb{R}^4$$
$$x \mapsto gx.$$

This map is \mathbb{R} -linear since

- the elements of Span $\{1\}$, which are the scalars in this case, are in the center of \mathbb{H} , and
- multiplication distributes over addition in the ring \mathbb{H} .

Moreover, the map is an isometry by the multiplicativity of the norm: |gx| = |g||x| = |x|for any $g \in U$ and $x \in H$. Hence U acts by isometries on \mathbb{R}^4 by left multiplication. An identical argument confirms that right multiplication defines an action by isometries of U on \mathbb{R}^4 .

Let $R_i : \mathbb{H} \to \mathbb{H}$ denote right multiplication by *i*. Then $(R_i)^2 = -$ Id. Define a nondegenerate symmetric bilinear form on \mathbb{H} as

$$B(a+bi+cj+dk, x+yi+zj+wk) = ax+by+cz+dw$$

The norm defined above on \mathbb{H} is the same as the norm induced by B. A short calculation shows that $B(R_i(v), w) = -B(v, R_i(w))$ for any $v, w \in \mathbb{H}$. The maps R_i and B are enough to define a complex vector space structure with a Hermitian form on \mathbb{H} . Specifically, $a+bi \in \mathbb{C}$ acts as

$$(a+bi) \cdot v = a \cdot v + b \cdot (R_i(v)) = av + b(iv),$$

and the Hermitian form H is defined as

$$H(v,w) = B(v,w) + i \cdot \omega(v,w)$$

where $\omega(v, w) := -B(R_i(v), w)$ is a skew-symmetric nondegenerate bilinear form (called a *symplectic form*). In particular, $\omega(v, v) = 0$ for all $v \in \mathbb{H}$, and the norm induced by H is equal to the norm on \mathbb{H} defined above:

$$|v|_{H} = H(v, v) = B(v, v) = a^{2} + b^{2} + c^{2} + d^{2} = |v|.$$

Since \mathbb{H} is a 2-dimensional complex vector space, the group SU(2) can be identified with the norm-preserving transformations of \mathbb{H} . Each element g of U defines a such transformation by the left multiplication map L_g . Identifying L_g with g, we see that U embeds as a subgroup in SU(2). Both are connected 3-dimensional Lie groups, so U is isomorphic to SU(2).

Here's another way to see the isomorphism. Recall that SU(2) is the set of 2 by 2 matrices A over \mathbb{C} with $\bar{A}^T A = I$ with determinant 1. A standard argument shows the first

equality below, and the rest follow:

$$SU(2) = \left\{ \begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix} : a, b \in \mathbb{C}, \ |a|^2 + |b|^2 = 1 \right\}$$
$$= \left\{ \begin{bmatrix} x + iy & u + iv \\ -u + iv & x - iy \end{bmatrix} : x, y, u, v \in \mathbb{R}, \ x^2 + y^2 + u^2 + v^2 = 1 \right\}$$
$$= \left\{ x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} + u \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + v \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} :$$
$$x, y, u, v \in \mathbb{R}, \quad x^2 + y^2 + u^2 + v^2 = 1 \right\}$$

A generic element x = a + bi + cj + dk of \mathbb{H} can be written as x = (a + bi) + (c + di)j. This produces a decomposition $\mathbb{H} = \mathbb{C} \oplus \mathbb{C}j \simeq \mathbb{C}^2$. Since $j^2 = -1$, this defines a complex structure on \mathbb{H} . With this decomposition in mind, the elements 1, i, j, and k act on the right as

$$1: \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad i: \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \qquad j: \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad k: \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

These identifications reveal the isomorphism $U \simeq SU(2)$.

3 The cover $SU(2) \rightarrow SO(3)$

We will make use of the following lemma, which is proven assuming results from *Introduction* to Smooth Manifolds by John Lee.

Lemma 2. Suppose $f : G \to H$ is a map of Lie groups of the same dimension, with H connected. If the kernel of f is discrete, then f is a covering map.

Proof. As a Lie group homomorphism, f has constant rank. The rank is equal to the codimension of the kernel, which in this case is dim $G - 0 = \dim G = \dim H$. Hence f has full rank and is in particular a local diffeomorphism. Therefore, a neighborhood of the identity in G maps diffeomorphically to a neighborhood of the identity of H. The connectivity of H implies that H is generated by any open neighborhood of the identity. Consequently, f is surjective. Since the kernel is discrete, f must be a covering map.

Recall that an \mathbb{R} -algebra endomorphism of \mathbb{H} is a ring homomorphism from \mathbb{H} to itself that fixes 1. Let Aut(\mathbb{H}) denote the invertible \mathbb{R} -algebra endomorphisms of \mathbb{H} . Then Aut(\mathbb{H}) is a closed subgroup of $GL(\mathbb{H}) \simeq GL_4\mathbb{R}$, hence a Lie group. There is a Lie group homomorphism

$$H - \{0\} \to \operatorname{Aut}(\mathbb{H})$$
$$g \mapsto (x \mapsto gxg^{-1})$$

whose kernel is the center $Z(\mathbb{H})$ of \mathbb{H} . Observe that each g acts by isometries since $|gxg^{-1}| = |g||x||g^{-1}| = |gg^{-1}||x| = |x|$ for any $x, g \in H$. Each g fixes 1, hence fixes

$$1^{\perp} = \{x \in \mathbb{H} : B(1,x)\} = \{a + bi + cj + dk \in \mathbb{H} : a = 0\} = \operatorname{Im} \mathbb{H}$$

as well. Thus each g acts my isometries fixing 0 on Im \mathbb{H} . Identifying Im \mathbb{H} with \mathbb{R}^3 , we see that the homomorphism above induces a map

$$H - \{0\} \to \mathcal{O}(3).$$

The codomain can be refined to special orthogonal group SO(3) since $H - \{0\}$ is connected. We restrict this map to U to obtain a Lie group homomorphism

$$\phi: U \to \mathrm{SO}(3)$$

whose kernel is the discrete subgroup $Z(\mathbb{H}) \cap U = \{\pm 1\}$. Using the isomorphism of the previous section and Lemma 2, it follows that $\phi : \mathrm{SU}(2) \to \mathrm{SO}(3)$ is a 2-fold covering map. Note that $\mathrm{SU}(2)$ is simply connected since $\mathrm{SU}(2) \simeq U$ is diffeomorphic to S^3 . The 2-fold cover ϕ implies that $\pi_1(\mathrm{SO}(3)) = \mathbb{Z}/2$. In fact, $\mathrm{SO}(3)$ is diffeomorphic to \mathbb{RP}^3 .

4 The fundamental group of SO(n)

Th orthogonal group SO(2) consists of rotations about the origin in \mathbb{R}^2 ; it is therefore isomorphic to the circle S^1 and its fundamental group is \mathbb{Z} . For any n, SO(n) acts transitively on S^{n-1} with stabilizer SO(n-1). Hence, there is a fibration

$$\begin{array}{c} \mathrm{SO}(n-1) & \longrightarrow & \mathrm{SO}(n) \\ & & \downarrow \\ & & S^{n-1} \end{array}$$

with associated long exact sequence in homotopy given by

$$\cdots \to \pi_2(S^{n-1}) \to \pi_1(\mathrm{SO}(n-1)) \to \pi_1(\mathrm{SO}(n)) \to \pi_1(S^{n-1}) \to 1.$$

For $n \ge 4$, the homotopy group $\pi_2(S^{n-1})$ is trivial, so we obtain an isomorphism

$$\pi_1(\mathrm{SO}(n-1)) \simeq \pi_1(\mathrm{SO}(n)).$$

Since $SO(3) = \mathbb{Z}/2$, by induction we conclude that

$$\pi_1(\mathrm{SO}(n)) = \begin{cases} \mathbb{Z} & \text{if } n = 2\\ \mathbb{Z}/2 & \text{if } n \ge 3 \end{cases}.$$

5 The cover $SU(2) \times SU(2) \rightarrow SO(4)$

For each pair $(g, h) \in U \times U$, there is a map on $\mathbb{H} \simeq \mathbb{R}^4$ defined by $x \mapsto gxh$. An argument similar to that in part (c) shows that each such map is \mathbb{R} -linear and norm-preserving, hence an element of SO(4). Since $U \times U$ is connected, we obtain a map

$$\phi: U \times U \to \mathrm{SO}(4)$$
$$(g, h) \mapsto (x \mapsto gxh).$$

It is easy to check that this is a Lie group homomorphism. We will show that the kernel of ϕ is the discrete subgroup $\{(1,1), (-1,-1)\}$. By Lemma 2, it will follow that ϕ is a 2-fold covering map.

If gxh = x for all $x \in \mathbb{H}$, then, in particular, gh = g1h = 1, so $h = g^{-1}$. From previous work, we know that $x = gxg^{-1}$ for all $x \in \mathbb{H}$ if and only if $g \in \{\pm 1\}$. Hence either g = 1 and $h = g^{-1} = 1$ or g = -1 and $h = g^{-1} = -1$.

6 Generators for O(4)

The last result we show is that right and left multiplication together with quaternionic conjugation generate O(4). The quaternionic conjugation map $c: x \mapsto \bar{x}$ is an orientationreversing orthogonal transformation of $\mathbb{H} \simeq \mathbb{R}^4$ since it involves 3 reflections. Hence c is not in SO(4), but the other component of O(4). Let $L_c: O(4) \to O(4)$ be left multiplication by c, so $L_c(f) = c \circ f$. Then, by standard Lie group arguments, L_c is a diffeomorphism taking the connected component of the identity diffeomorphically to the connected component of c. In this case, L_c takes SO(4) diffeomorphically to the connect O(4) \ SO(4). Since the map ϕ from above is a covering map of SO(4), we observe that

$$L_c \circ \phi : U \times U \to \mathcal{O}(4) \setminus \mathcal{SO}(4)$$

is also a covering map. To summarize, the map

$$\psi: U \times U \times \mathbb{Z}/2 \to \mathcal{O}(4)$$

defined by

$$(g,h,i) \mapsto (x \mapsto c^i(gxh))$$

is a covering map of O(4). Hence right and left multiplication together with quaternionic conjugation generate O(4).