The cover $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ and related topics

Iordan Ganev

December 2011

Abstract

The subgroup U of unit quaternions is isomorphic to $\mathrm{SU}(2)$ and is a double cover of $\mathrm{SO}(3)$. This allows a simple computation of the fundamental group of $\mathrm{SO}(n)$. We also show how $\mathrm{SU}(2) \times \operatorname{SU}(2)$ is a double cover of $\mathrm{SO}(4)$. Finally, we argue that $\mathrm{O}(4)$ is generated by the left and right multiplication maps together with quaternionic conjugation.

1 A brief review of the quaternions \mathbb{H}

Let \mathbb{H} be the free \mathbb{R}-module on the set $\{1, i, j, k\}$. Therefore, \mathbb{H} is a four-dimensional vector space in which an arbitrary element x can be written as $x=a+b i+c j+d k$ for some real numbers a, b, c, and d. Define an algebra structure on \mathbb{H} by extending linearly the multiplication of the finite group of quaternions

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\} .
$$

By a slight abuse of terminology, elements of \mathbb{H} are called quaternions. The conjugate of an element $x=a+b i+c j+d k$ of \mathbb{H} is defined as $\bar{x}=a-b i-c j-d k$, and the map $x \mapsto x \bar{x}$ defines a norm on \mathbb{H}. The subspace $\operatorname{Im} \mathbb{H}$ of purely imaginary quaternions is the subspace with $a=0$. The unit sphere in \mathbb{H}, i.e. the unit quaternions, forms a multiplicative group, denoted U, that is diffeomorphic to S^{3}.

Lemma 1. The center of \mathbb{H} is $\operatorname{Span}\{1\}$.
Proof. It is clear that $\operatorname{Span}\{1\}$ is contained in the center since the center of Q_{8} is $\{ \pm 1\}$. Suppose $x=a+b i+c j+d k$ is in the center. Then $x i=i x$ implies that

$$
a i-b-c k+d j=a i-b+c k-d j,
$$

so $c=d=0$ and $x=a+b i$. Now, $x j=j x$ implies that

$$
a j+b k=a j-b k .
$$

Hence $b=0$ and $x=a \in \operatorname{Span}\{1\}$.

$2 \quad U \simeq \mathbf{S U}(2)$

We argue that, as Lie groups, U is isomorphic to the special unitary group $\mathrm{SU}(2)$. For each $g \in U$, there is a map

$$
\begin{aligned}
H \simeq \mathbb{R}^{4} & \rightarrow H \simeq \mathbb{R}^{4} \\
x & \mapsto g x .
\end{aligned}
$$

This map is \mathbb{R}-linear since

- the elements of $\operatorname{Span}\{1\}$, which are the scalars in this case, are in the center of \mathbb{H}, and
- multiplication distributes over addition in the ring \mathbb{H}.

Moreover, the map is an isometry by the multiplicativity of the norm: $|g x|=|g||x|=|x|$ for any $g \in U$ and $x \in H$. Hence U acts by isometries on \mathbb{R}^{4} by left multiplication. An identical argument confirms that right multiplication defines an action by isometries of U on \mathbb{R}^{4}.

Let $R_{i}: \mathbb{H} \rightarrow \mathbb{H}$ denote right multiplication by i. Then $\left(R_{i}\right)^{2}=-\mathrm{Id}$. Define a nondegenerate symmetric bilinear form on \mathbb{H} as

$$
B(a+b i+c j+d k, x+y i+z j+w k)=a x+b y+c z+d w .
$$

The norm defined above on \mathbb{H} is the same as the norm induced by B. A short calculation shows that $B\left(R_{i}(v), w\right)=-B\left(v, R_{i}(w)\right)$ for any $v, w \in \mathbb{H}$. The maps R_{i} and B are enough to define a complex vector space structure with a Hermitian form on \mathbb{H}. Specifically, $a+b i \in \mathbb{C}$ acts as

$$
(a+b i) \cdot v=a \cdot v+b \cdot\left(R_{i}(v)\right)=a v+b(i v)
$$

and the Hermitian form H is defined as

$$
H(v, w)=B(v, w)+i \cdot \omega(v, w)
$$

where $\omega(v, w):=-B\left(R_{i}(v), w\right)$ is a skew-symmetric nondegenerate bilinear form (called a symplectic form). In particular, $\omega(v, v)=0$ for all $v \in \mathbb{H}$, and the norm induced by H is equal to the norm on \mathbb{H} defined above:

$$
|v|_{H}=H(v, v)=B(v, v)=a^{2}+b^{2}+c^{2}+d^{2}=|v| .
$$

Since \mathbb{H} is a 2-dimensional complex vector space, the $\operatorname{group} \mathrm{SU}(2)$ can be identified with the norm-preserving transformations of \mathbb{H}. Each element g of U defines a such transformation by the left multiplication map L_{g}. Identifying L_{g} with g, we see that U embeds as a subgroup in $\mathrm{SU}(2)$. Both are connected 3-dimensional Lie groups, so U is isomorphic to $\mathrm{SU}(2)$.

Here's another way to see the isomorphism. Recall that $\mathrm{SU}(2)$ is the set of 2 by 2 matrices A over \mathbb{C} with $\bar{A}^{T} A=I$ with determinant 1 . A standard argument shows the first
equality below, and the rest follow:

$$
\begin{aligned}
\mathrm{SU}(2) & =\left\{\left[\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right]: a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1\right\} \\
& =\left\{\left[\begin{array}{cc}
x+i y & u+i v \\
-u+i v & x-i y
\end{array}\right]: x, y, u, v \in \mathbb{R}, x^{2}+y^{2}+u^{2}+v^{2}=1\right\} \\
= & \left\{x\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]+y\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]+u\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]+v\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right]:\right. \\
& \left.x, y, u, v \in \mathbb{R}, \quad x^{2}+y^{2}+u^{2}+v^{2}=1\right\}
\end{aligned}
$$

A generic element $x=a+b i+c j+d k$ of \mathbb{H} can be written as $x=(a+b i)+(c+d i) j$. This produces a decomposition $\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \simeq \mathbb{C}^{2}$. Since $j^{2}=-1$, this defines a complex structure on \mathbb{H}. With this decomposition in mind, the elements $1, i, j$, and k act on the right as

$$
1:\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \quad i:\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \quad j:\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad k:\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right]
$$

These identifications reveal the isomorphism $U \simeq \mathrm{SU}(2)$.

3 The cover $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$

We will make use of the following lemma, which is proven assuming results from Introduction to Smooth Manifolds by John Lee.

Lemma 2. Suppose $f: G \rightarrow H$ is a map of Lie groups of the same dimension, with H connected. If the kernel of f is discrete, then f is a covering map.

Proof. As a Lie group homomorphism, f has constant rank. The rank is equal to the codimension of the kernel, which in this case is $\operatorname{dim} G-0=\operatorname{dim} G=\operatorname{dim} H$. Hence f has full rank and is in particular a local diffeomorphism. Therefore, a neighborhood of the identity in G maps diffeomorphically to a neighborhood of the identity of H. The connectivity of H implies that H is generated by any open neighborhood of the identity. Consequently, f is surjective. Since the kernel is discrete, f must be a covering map.

Recall that an \mathbb{R}-algebra endomorphism of \mathbb{H} is a ring homomorphism from \mathbb{H} to itself that fixes 1. Let $\operatorname{Aut}(\mathbb{H})$ denote the invertible \mathbb{R}-algebra endomorphisms of \mathbb{H}. Then Aut (\mathbb{H}) is a closed subgroup of $G L(\mathbb{H}) \simeq \mathrm{GL}_{4} \mathbb{R}$, hence a Lie group. There is a Lie group homomorphism

$$
\begin{aligned}
H-\{0\} & \rightarrow \operatorname{Aut}(\mathbb{H}) \\
g & \mapsto\left(x \mapsto g x g^{-1}\right)
\end{aligned}
$$

whose kernel is the center $Z(\mathbb{H})$ of \mathbb{H}. Observe that each g acts by isometries since $\left|g x g^{-1}\right|=$ $|g||x|\left|g^{-1}\right|=\left|g g^{-1}\right||x|=|x|$ for any $x, g \in H$. Each g fixes 1 , hence fixes

$$
1^{\perp}=\{x \in \mathbb{H}: B(1, x)\}=\{a+b i+c j+d k \in \mathbb{H}: a=0\}=\operatorname{Im} \mathbb{H}
$$

as well. Thus each g acts my isometries fixing 0 on $\operatorname{Im} \mathbb{H}$. Identifying $\operatorname{Im} \mathbb{H}$ with \mathbb{R}^{3}, we see that the homomorphism above induces a map

$$
H-\{0\} \rightarrow \mathrm{O}(3)
$$

The codomain can be refined to special orthogonal group $\mathrm{SO}(3)$ since $H-\{0\}$ is connected. We restrict this map to U to obtain a Lie group homomorphism

$$
\phi: U \rightarrow \mathrm{SO}(3)
$$

whose kernel is the discrete subgroup $Z(\mathbb{H}) \cap U=\{ \pm 1\}$. Using the isomorphism of the previous section and Lemma 2, it follows that $\phi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ is a 2 -fold covering map. Note that $\mathrm{SU}(2)$ is simply connected since $\mathrm{SU}(2) \simeq U$ is diffeomorphic to S^{3}. The 2-fold cover ϕ implies that $\pi_{1}(\mathrm{SO}(3))=\mathbb{Z} / 2$. In fact, $\mathrm{SO}(3)$ is diffeomorphic to $\mathbb{R} \mathbb{P}^{3}$.

4 The fundamental group of $\mathrm{SO}(n)$

Th orthogonal group $\mathrm{SO}(2)$ consists of rotations about the origin in \mathbb{R}^{2}; it is therefore isomorphic to the circle S^{1} and its fundamental group is \mathbb{Z}. For any $n, \mathrm{SO}(n)$ acts transitively on S^{n-1} with stabilizer $\mathrm{SO}(n-1)$. Hence, there is a fibration

with associated long exact sequence in homotopy given by

$$
\cdots \rightarrow \pi_{2}\left(S^{n-1}\right) \rightarrow \pi_{1}(\mathrm{SO}(n-1)) \rightarrow \pi_{1}(\mathrm{SO}(n)) \rightarrow \pi_{1}\left(S^{n-1}\right) \rightarrow 1 .
$$

For $n \geq 4$, the homotopy group $\pi_{2}\left(S^{n-1}\right)$ is trivial, so we obtain an isomorphism

$$
\pi_{1}(\mathrm{SO}(n-1)) \simeq \pi_{1}(\mathrm{SO}(n))
$$

Since $\mathrm{SO}(3)=\mathbb{Z} / 2$, by induction we conclude that

$$
\pi_{1}(\mathrm{SO}(n))=\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } n=2 \\
\mathbb{Z} / 2 & \text { if } n \geq 3
\end{array} .\right.
$$

5 The cover $\mathbf{S U}(2) \times \mathbf{S U}(2) \rightarrow \mathbf{S O}(4)$

For each pair $(g, h) \in U \times U$, there is a map on $\mathbb{H} \simeq \mathbb{R}^{4}$ defined by $x \mapsto g x h$. An argument similar to that in part (c) shows that each such map is \mathbb{R}-linear and norm-preserving, hence an element of $\mathrm{SO}(4)$. Since $U \times U$ is connected, we obtain a map

$$
\begin{aligned}
\phi: U \times U & \rightarrow \mathrm{SO}(4) \\
(g, h) & \mapsto(x \mapsto g x h) .
\end{aligned}
$$

It is easy to check that this is a Lie group homomorphism. We will show that the kernel of ϕ is the discrete subgroup $\{(1,1),(-1,-1)\}$. By Lemma 2, it will follow that ϕ is a 2 -fold covering map.

If $g x h=x$ for all $x \in \mathbb{H}$, then, in particular, $g h=g 1 h=1$, so $h=g^{-1}$. From previous work, we know that $x=g x g^{-1}$ for all $x \in \mathbb{H}$ if and only if $g \in\{ \pm 1\}$. Hence either $g=1$ and $h=g^{-1}=1$ or $g=-1$ and $h=g^{-1}=-1$.

6 Generators for $\mathbf{O}(4)$

The last result we show is that right and left multiplication together with quaternionic conjugation generate $\mathrm{O}(4)$. The quaternionic conjugation map $c: x \mapsto \bar{x}$ is an orientationreversing orthogonal transformation of $\mathbb{H} \simeq \mathbb{R}^{4}$ since it involves 3 reflections. Hence c is not in $\mathrm{SO}(4)$, but the other component of $\mathrm{O}(4)$. Let $L_{c}: \mathrm{O}(4) \rightarrow \mathrm{O}(4)$ be left multiplication by c, so $L_{c}(f)=c \circ f$. Then, by standard Lie group arguments, L_{c} is a diffeomorphism taking the connected component of the identity diffeomorphically to the connected component of c. In this case, L_{c} takes $\mathrm{SO}(4)$ diffeomorphically to the component $\mathrm{O}(4) \backslash \mathrm{SO}(4)$. Since the map ϕ from above is a covering map of $\mathrm{SO}(4)$, we observe that

$$
L_{c} \circ \phi: U \times U \rightarrow \mathrm{O}(4) \backslash \mathrm{SO}(4)
$$

is also a covering map. To summarize, the map

$$
\psi: U \times U \times \mathbb{Z} / 2 \rightarrow \mathrm{O}(4)
$$

defined by

$$
(g, h, i) \mapsto\left(x \mapsto c^{i}(g x h)\right)
$$

is a covering map of $\mathrm{O}(4)$. Hence right and left multiplication together with quaternionic conjugation generate $\mathrm{O}(4)$.

