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0 Introduction

The goal of this talk is to introduce (1) the notion of a quantum universal enveloping quasi-bialgebra (QUE
algebra for short) for a Lie algebra, (2) Drinfeld’s associators as a way to construct QUE algebras, and (3)
the Grothendieck-Teichmüller group as the symmetries associators for braided monoidal categories. Section
1 gives background on quasi-bialgebras. In Section 2, we define QUE algebras as quantizations of Casimir
Lie algebras. We also define the holonomy Lie algebra tn in order to introduce the concept of a Drinfeld
associator. Section 3 explains how the process of changing the associativity and commutativity constraints
on a braided monoidal category, which maintaining the rest of the structure, leads to the definition of (the
pro-nilpotent version of) the Grothendieck-Teichmüller group.

1 Quasi-bialgebras

This section introduces background on quasi-bialgebras. Quasi-bialgebras are generalizations of bialgebras
in which the coproduct is only associative up to a ‘coassociator’. As we will see, an advantage of quasi-
bialgebras is that they admit certain symmetries, called gauge transformations, making them more flexible
to work with than ordinary bialgebras. We assume familiarity with bialgebras, Hopf algebras, universal
R-matrices, braided monoidal categories, and rigid monoidal categories. The proofs given here are more
precisely only sketches of proofs; the audience is invited to fill in the details.

1.1 Definition of quasi-bialgebras

Let k be a field. Let A be an associative unital algebra over k. Fix homomorphisms ∆ : A → A ⊗ A and
ε : A→ k. Observe that if U , V are A-modules, then the tensor product U ⊗ V carries an action of A given
by the composition

A
∆−→ A⊗A→ End(U)⊗ End(V )→ End(U ⊗ V ).

Also, the field k becomes an A-module via the map ε. Let A−mod denote the category of A-modules.

Question: when does this tensor product (with unit given by ε) define a monoidal structure on A−mod?

In other words, we need A-linear asociativity isomorphisms aU,V,W : (U⊗V )⊗W → U⊗(V ⊗W ) that satisfy
the pentagon and triangle axioms. Recall that, if (A,∆, ε) is a bialgebra (in particular, ∆ is coassociative),
then A−mod is monoidal with the trivial associator (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).

Idea: A weaker version of coassociativity for ∆ can still be used to define a monoidal structure,
and leads to the notion of a quasi-bialgebra.

Definition. A quasi-bialgebra is an algebra A over k together with homomorphisms ∆ : A → A ⊗ A and
ε : A→ k, and an invertible element Φ ∈ A⊗A⊗A that satisfy the following equations:

((Id⊗∆) ◦∆)(a) = Φ−1.((∆⊗ Id) ◦∆)(a).Φ, for all a ∈ A (1)

(∆⊗ Id⊗ Id)(Φ).(Id⊗ Id⊗∆)(Φ) = (Φ⊗ Id).(Id⊗∆⊗ Id)(Φ).(Id⊗ Φ) (2)

(ε⊗ Id) ◦∆ = Id = (Id⊗ ε) ◦∆ (3)

(Id⊗ ε⊗ Id)(Φ) = 1. (4)

Remark. The element Φ is often called a ‘coassociator’. Any bialgebra is a quasi-bialgebra with the trivial
coassociator Φ = 1⊗ 1⊗ 1.
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Proposition 1. Let A be a quasi-bialgebra. Then A−mod is a monoidal category with the above tensor
product, unit object ε : A→ k, and associativity isomorphisms given by the (componentwise) action of Φ:

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

(u⊗ v)⊗ w 7→ Φ(u⊗ (v ⊗ w)).

Proof. Equation (1) implies the maps αU,V,W are A-modules homomorphisms and equation (2) ensures that
they satisfy the pentagon axiom. Equation (3) implies that ε : A → k is the unit object and equation (4)
implies the triangle axiom.

Remark. There is a notion of a quasi-bialgebra where the unit constraints are loosened, but it seems to
occur more seldomly in practice, so we omit it here.

1.2 Quasi-fiber functors

In this subsection, we will see that so-called quasi-fiber functors provide a source of quasi-bialgebras.

Definition. A monoidal functor between monoidal categories C and D is a pair (F, J) consisting of a functor
F : C → D and a natural isomorphism J : F (−) ⊗ F (−) → F (− ⊗ −), called the monoidal structure on F
such that:

1. J is compatible with the associativity constraints, i.e. the following diagram commutes:

(F (U)⊗ F (V ))⊗ F (W )
aDF (U),F (V ),F (W ) //

J⊗Id
��

F (U)⊗ (F (V )⊗ F (W ))

Id⊗J
��

F (U ⊗ V )⊗ F (W )

J

��

F (U)⊗ F (V ⊗W )

J

��
F ((U ⊗ V )⊗W )

F (aCU,V,W )
// F (U ⊗ (V ⊗W ))

(5)

Here, aC and aD are the associativity constraints in C and D, respectively.

2. F (1C) = 1D

3. J is compatible with the unit constraints (see Kassel, XI.4.1, diagrams (4.2) and (4.3)).

A quasi-monoidal functor is a pair (F, J) as above that satisfies items 2 and 3, but not necessarily item 1.
In this case, J is called a quasi-monoidal structure on F . We say that a natural transformation η : F → F
is compatible with a quasi-monoidal structure J if JU,V ◦ ηU ⊗ ηV = ηU⊗V ◦ JU,V for all objects U, V in C.

Remark. A weaker version of the above definition is to require the data of an isomorphism F (1C)
∼−→ 1D,

and the appropriate modifications to the compatiblility with the unit constraints.

Definition. A (quasi-)fiber functor is a faithful and exact (quasi-)monoidal functor (F, J) : C → Vecfdk from
a k-linear monoidal category C the the category of finite-dimensional vector spaces over k.

Let A−modfd denote the category of A-modules that are finite-dimensional as k-vector spaces.

Proposition 2. Let (F, J) : C → Vecfdk be a (quasi-)fiber functor. The algebra A = EndJ(F ) of endomor-
phisms of F compatible with J naturally forms a (quasi-)bialgebra. There is a natural functor C → A−modfd

which, under finiteness assumptions on C, is an equivalence of categories.
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Proof. Abbreviate EndJ(F ) by End(F ). The algebra structure on A = End(F ) is given by the composition
of natural transformations. The comultiplication is defined as follows. First, since natural transformations
pull back under functors, there is a map A = End(F ) → End(F ◦ ⊗). Next, the natural isomorphism J
defines an isomorphism End(F ◦ ⊗) ' End(⊗ ◦ (F × F )).

C × C
F×F

xxqqqqqqqqqq
⊗

%%KKKKKKKKKK

Vecfdk ×Vecfdk ⇐
J

⊗ &&LLLLLLLLLL
C

Fzztttttttttt

Vecfdk

Now, End(⊗ ◦ (F × F )) ' End(F ) ⊗ End(F ) = A ⊗ A. Putting these pieces together, we obtain a map
∆ : A→ A⊗A. The counit is defined as the map ε : A = End(F )→ k taking a to aF (1) = ak ∈ Endk(k) = k.
The coassociator Φ on A = EndJ(F ) emerges from the possible failure of the commutativity of diagram 5.

1.3 Quasitriangular quasi-bialgebras

Recall that a quasitriangular bialgebra is a bialgebra A with the extra structure of a universal R-matrix.
The universal R-matrix endows A−mod with the structure of a braided monoidal category. Similarly, there
is a notion of a universal R-matrix in the setting of quasi-bialgebras.

Definition. A quasitriangular quasi-bialgebra is a quasi-bialgebra together with an invertible element R ∈
A⊗A, called its universal R-matrix, that satisfies

∆op(a) = R.∆(a).R−1 (6)

(∆⊗ Id)(R) = Φ−1
231R13Φ132R23Φ−1

123 (7)

(Id⊗∆)(R) = Φ312R13Φ−1
213R12Φ123 (8)

If, in addition, R satisfiesR21 = R−1
12 and (ε⊗ε)R = 1, then we say that (A,R) is a triangular quasi-bialgebra.

Here, if Φ =
∑
s φs ⊗ φ′s ⊗ φ′′s , then define Φ312 =

∑
s φ
′′
s ⊗ φs ⊗ φ′s, etc.

Proposition 3. Let A be a quasitriangular (resp. triangular) quasi-bialgebra. Then A−mod has the natural
structure of a braided (resp. symmetric) monoidal category.

Proof. For U, V ∈ A−mod, define

cU,V : U ⊗ V → V ⊗ U
u⊗ v 7→ (12) ◦ (ρU ⊗ ρV )(R)(u⊗ v)

where (12) : U ⊗ V → V ⊗ U is the usual switch map u⊗ v 7→ v ⊗ u, and ρU : A → End(U) and ρV : A →
End(V ) are the action maps, so that ρU ⊗ ρV defines a map A ⊗ A → End(U) ⊗ End(V ) ' End(U ⊗ V ).
Then equation (6) implies that cU,V is A-linear and equations (7) and (8) guarantee that the hexagon axioms
hold.

Remark. A universal R-matrix R satisfies the so-called ‘quasi-quantum Yang Baxter equation’:

R12Φ312R13Φ−1
213R12Φ123 = Φ321R23Φ312R13Φ−1

213R12.
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1.4 Gauge transformations

One advantage of quasi-bialgebras over ordinary algebras is the existence of certain symmetries on the
category of quasi-bialgebras.

Definition. Let (A,∆, ε,Φ) be a quasi-bialgebra. A gauge transformation is an invertible element F ∈ A⊗A
such that

(ε⊗ Id)(F ) = 1 = (Id⊗ ε)(F ).

For such an F , define:

∆F (a) = F.∆(a).F−1, ΦF = F12.(∆⊗ Id)(F ).Φ.(Id⊗∆)(F )−1.F−1
23 .

If A is quasitriangular with universal R matrix R, define:

RF = F21.R.F−1
12 .

Lemma 4. Let A be a quasi-bialgebra and let F ∈ A ⊗ A be a gauge transformation. Then (A,∆F , ε,ΦF )
is a quasi-bialgebra, denoted AF . If A is quasitriangular with universal R-matrix R, then RF is a universal
R-matrix for AF .

Definition. Let A and B be two (quasitriangular) quasi-bialgebras. If B = AF for some F ∈ A ⊗ A as
above, then we say that A and B are twist equivalent or gauge equivalent and that B is obtained from A by
twisting the (quasitriangular) quasi-bialgebra structure by F .

Note that twisting forms an equivalence relation on quasi-bialgebras. In fact, this equivalence extends to
the categorical level:

Proposition 5. Let A be a quasi-bialgebra. For any F as above, the categories A−mod and AF−mod are
equivalent as braided monoidal categories. If, moreover, A is quasitriangular, then A−mod and AF−mod
are equivalent as braided monoidal categories.

Proof. To define an equivalence of monoidal categories, we must construct a functor f : A−mod→ AF−mod
as well as a natural isomorphism J : f(− ⊗ −) → f(−) ⊗ f(−) that satisfies certain axioms related to the
monoidal structure. Take f to be the identity, noting that A and AF are identical as algebras. For U, V
in A−mod, take JU,V to the be image of F in End(U ⊗ V ). The proof reveals that ∆F , ΦF , and RF were
defined to ensure the existence of this equivalence.

Corollary 6. There is a bijective correspondence between gauge transformations on a quasi-bialgebra A and
quasi-monoidal structures J on the forgetful functor F : A−mod→ Veck.

Proof. Given a gauge transformation F , define JU,V using the action of F on U⊗V . Given a quasi-monoidal
structure J , define F as the image of 1⊗ 1 under JA,A.

1.5 Quasi-Hopf algebras

Recall that a Hopf algebra is a bialgebra A over k together with an antihomomorphism S : A → A, called
the antipode, that satisfies the antipode axiom:∑

r

S(ar)a
′
r = ε(a)

for all a ∈ A, where ∆(a) =
∑
r ar ⊗ a′r. If U is an object in the category A−modfd of finite-dimensional

modules for a Hopf algebra A, then A acts on the dual U∗ = Homk(U, k) by 〈a.ξ, u〉 = 〈ξ, S(a).u〉. The
antipode axiom ensure that the evaluation map U∗ ⊗ U → k and the coevaluation map k → U ⊗ U∗ are A-
linear. Moreover, the evaluation and coevaluation maps satisfy the rigidity axioms; consequently, A−modfd

has the structure of a rigid monoidal category. Recall also that if an antipode exists, then it is unique.
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Previously we investigated a weaker version of coassociativity of a bialgebra that still produced the
monoidal structure on the category of modules. Similarly, a weakening of both the anitpode axiom and
coassociativity leads to a generalization of a Hopf algebra, called a quasi-Hopf algebra, whose category of
modules is a rigid monoidal category.

Definition. A quasi-Hopf algebra is a quasi bialgebra (A,∆, ε,Φ) together with an antihomomorphism S :
A→ A and elements α, β ∈ A that satisfy∑

r

S(ar)αa
′
r = ε(a)α,

∑
r

arβS(a′r) = ε(a)β (9)

for all a ∈ A, and ∑
s

S(φs)αφ
′
sβS(φ′′s ) = 1,

∑
t

φ̄tβS(φ̄′t)αφ̄
′′
t = 1. (10)

Here
∆(a) =

∑
r

ar ⊗ a′r, Φ =
∑
s

φs ⊗ φ′s ⊗ φ′′s , Φ−1 =
∑
t

φ̄t ⊗ φ̄′t ⊗ φ̄′′t .

A universal R-matrix for a quasi-Hopf algebra is a universal R-matrix for the underlying quasi-bialgebra. A
quasitriangular quasi-Hopf algebra is a quasi-Hopf algebra equipped with a universal R-matrix.

Observe that any Hopf algebra is a quasi-Hopf algebra with Φ = 1⊗ 1⊗ 1 and α = β = 1. The following
proposition follows easily by checking the rigidity axioms.

Proposition 7. Let (A,∆, ε,Φ, S, α, β) be a quasi-Hopf algebra. The category A−modfd is a rigid monoidal
category, where the evaluation and coevaluation maps are given by

U∗ ⊗ U → k k → U ⊗ U∗ (11)

ξ ⊗ u 7→ 〈ξ, a.u〉 1 7→
∑
i

β.ui ⊗ ξi (12)

A gauge transformation of a quasi-Hopf algebra is a gauge transformation of the underlying quasi-bialgebra,
together with a twisting of the elements α and β.

Definition. Let (A,∆, ε,Φ, S, α, β) be a quasi-Hopf algebra and let F =
∑
i fi⊗gi be a gauge transformation

on A with inverse
∑
j f̄j ⊗ gj . Define

αF =
∑
j

S(f̄j)αḡj , βF =
∑
i

fiβS(gi).

Proposition 8. Let (A,∆, ε,Φ, S, α, β) be a quasi-Hopf algebra and F a gauge transformation on A. Then
(A,∆F , ε,ΦF , S, αF , βF ) is a quasi-Hopf algebra.

Example. Let G be a finite group. Let C[G] be the group algebra of G, and let O(G) be the algebra of
complex-valued functions on G. Let D(G) = O(G)⊗C[G]. Given a (normalized) 3-cocyle c : G×G×G→ S1

with values in the circle group, one can define a quasi-Hopf algebra structure on D(G), denoted Dc(G). It
turns out that Dc(G) and Dc′(G) are twist-equivalent if and only if the cocycles c and c′ are cohomologous.
Hence, up to twist equivalence, the quasi-Hopf algebras Dc(G) are classified by H3(G,S1). This example is
due to Dijkgraaf, Pasquier, and Roche, and relates to conformal field theories with symmetry group G.

2 QUE algebras

Observe that all constructions of the previous section make sense for algebras over the ring k[[h]] of formal
power series in k, where all tensor products are replaced by completed tensor products. One can show that, if
A is a topological (quasitriangular) quasi-bialgebra, then A/hA inherits the structure of a (quasitriangular)
quasi-bialgebra. See Kassel, Section XVI.4 for more details.

6



2.1 Definition of QUE algebras

We work over C. Set K = C[[h]]. Let g be a Lie algebra over C, so U(g) is a bialgebra with the usual
coproduct ∆(x) = 1 ⊗ x + x ⊗ 1 and counit ε(x) = 1 for x ∈ g. Set RU(g) = 1 ⊗ 1 and ΦU(g) = 1 ⊗ 1 ⊗ 1
making U(g) into a quasitriangular quasi-bialgebra.

Definition. A quantum universal enveloping (QUE) algebra for g is a topological quasitriangular quasi-
bialgebra A = (A,∆, ε,Φ, R) such that A is topologically free as a K-module and A/hA is isomorphic to
U(g) as a quasitriangular quasi-bialgebra.

Let A be a QUE algebra. Observe that:

• A ' U(g)[[h]] as K-modules.

• The coproduct ∆ and counit ε on A are determined by the two conditions on A.

• We have that Φ ≡ 1⊗ 1⊗ 1 and R ≡ 1⊗ 1 mod h.

• The Lie algebra g is an invariant of A, obtained as the primitive elements of A/hA:

g = {x ∈ A/hA | ∆0 = 1⊗ x+ x⊗ 1}.

2.2 Casimir Lie algebras and quantization

We introduce another invariant of a QUE A:

Definition. Let A be a QUE algebra for g. The cannonical 2-tensor of A is the element t ∈ U(g) ⊗ U(g)
defined by

R21R ≡ 1⊗ 1 + ht mod h2.

Proposition 9. Let A be a QUE algebra for g and t ∈ U(g) ⊗ U(g) the cannonical 2-tensor. Then t is a
g-invariant symmetric element of g⊗ g and is invariant under gauge transformations.

Definition. A Casimir Lie algebra is a pair (g, t) consisting of a Lie algebra g together with a g-invariant
symmetric 2-tensor t ∈ Sym2(g)g. If t is the cannonical element of a QUE algebra A for g, then (g, t) is
called the classical limit of A and A is called a quantization of (g, t).

Diagrammitcally:

QUE algebras
classical limit

// Casimir Lie algebras (g, t)

quantization
rr

Example. In sl2, we take t = 1/4(E ⊗ F + F ⊗E + (H ⊗H)/2) coming from the Killing form (see Kassel,
XVII.1). The Drinfeld-Jimbo quantum group for sl2 is a quantization of the corresponding Casismir Lie
algebra.

Question: Given a Casimir Lie algebra (g, t), does a quantization exist?

We know that the quantization A is isomorphic to U(g)[[h]] as an algebra. To guarantee that R21R ≡ 1+ht
mod h2, we set R = eht/2. Now the question becomes: can we find an associator Φ that works?

Theorem 10 ([2]). There is a Φ that quantizes the Casimir Lie algebra (g, t). It is unique up to to gauge
transformations F ∈ Sym2(A)g.
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2.3 The holonomy Lie algebra

The strategy for finding Φ relies on Kohno’s holonomy Lie algebra. Although it is not crucial to the main
ideas of this talk, this Lie algebra will appear in later talks.

Definition. Fix a positive integer n. The holonomy Lie algebra tn is the Lie algebra over C generated by
Xij for 1 ≤ i, j ≤ n, i 6= j with the following relations:

• Xij = Xji

• [Xij , Xkl] = 0 for distinct i, j, k, l

• [Xij +Xik, Xjk] = 0 for distinct i, j, k

These relations are known as the infinitesimal braid relations. The holonomy Lie algebra can be realized
as follows. Let (g, t) be a Casimir Lie algebra, where g is simple. Write t =

∑
a⊗ b and define

tij =
∑

1⊗ . . .⊗ 1⊗ a⊗ 1⊗ . . .⊗ 1⊗ b⊗ 1⊗ . . . 1 ∈ U(g)⊗n,

where a appears in the ith slot and b appears in the jth slot. Then the tij satisfy the inifinitesimal braid
relations, so Xij 7→ tij is a representation of tn.

2.4 Drinfeld associators

Let C〈〈x, y〉〉 be the completed free algebra on 2 generators. There is a bialgebra structure on C〈〈x, y〉〉 given
by ∆(x) = 1⊗ x + x⊗ 1 and ∆(y) = 1⊗ y + y ⊗ 1. If φ is an element of C〈〈x, y〉〉 and a, b are elements of
a complete topological algebra A, then φ(a, b) is defined as the image of φ under the unique homomorphism
C〈〈x, y〉〉 → S taking x to a and y to b.

Definition. Let λ ∈ C×. An element φ ∈ C〈〈x, y〉〉 is called a Drinfeld λ-associator if

• φ is group-like, i.e. ∆(φ) = φ⊗ φ, and hence φ is invertible;

• φ(y, x) = φ(x, y)−1 in C〈〈x, y〉〉;

• (pentagon equation) the following identity holds in Û(t4):

φ(X12, X23 +X24)φ(X13 +X23, X34) = φ(X23, X34)φ(X12 +X13, X24 +X34)φ(X12, X23);

• (hexagon equation) the following identity holds in C〈〈x, y〉〉, where z = −x− y:

exp(λx/2)φ(z, x) exp(λz/2)φ(y, z) exp(λy/2)φ(x, y) = 1.

Let S denote the set of all λ-associators, for λ ∈ C×.

Let (g, t) be a Casimir Lie algebra, let A be U(g)[[h]] as a complete topological algebra with coproduct ∆
and counit ε extended from U(g). Define t12, t23 ∈ g⊗ g⊗ g in the obvious way.

Theorem 11. Suppose φ is a Drinfeld λ-associator. Let (g, t) be a Casimir Lie algebra. Then

(U(g)[[h]],∆, ε,Φ = φ(ht12, ht23), R = ehλt/2)

is a QUE algebra for (g, t).

Remark. Drinfeld constructed an explcit associator using the KZ equations (Pavel’s talk).
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3 Grothendieck-Teichmüller group

This section introduces the Grothendieck-Teichmüller group. Due to time constraints, this section has not
been written as carefully as the previous sections.

3.1 Motivation and notation

Let C be a braided monoidal category. Thus, we have associativity and commutativity constraints

aU,V,W : U ⊗ (V ⊗W )→ (U ⊗ V )⊗W, cU.V : U ⊗ V → V ⊗ U.

We consider the problem of changing the commutativity and associativity isomorphisms without changing
the rest of the structure of the category. A meaningful way to think about this problem is in terms of the
pure braid group.

Recall that the braid group Bn on n strands has a presentation:

Bn = 〈σ1, . . . , σn−1 | Braid relations : σ1σ2σ1 = σ2σ1σ2, etc.〉.

There is a surjective map from the braid group to the symmetric group Bn → Sn taking the generator σi to
the permutation (i, i+1). The pure braid group Kn is defined as the kernel of this map Bn → Sn. Pictorially,
these are braids in which each strand begins and ends at the same node.

The pure braid group K3 acts on U ⊗ (V ⊗W ), for any three objects U, V,W of C. Thus, if k ∈ K3,
then we define a ◦ k to be the new potential associativity constraint obtained from a by precomposing with
the action of k. Similarly, K2 acts on U ⊗ V and precomposing the commutativity isomorphism c with the
action of k′ ∈ K2, we obtain a new potential commutativity constraint, denoted c ◦ k′.

[Picture defining a ◦ k and c ◦ k′.]
Although the maps a ◦ k and c ◦ k′ are functorial, they are only potential associativity and commutativity

constraints since they may not satisfy the pentagon and hexagon equations. We return to this point below,
after introducing some notation:

• The groups B2 and K2 are free on one generator: Bn = 〈σ〉 ' Z and K2 = 〈σ2〉 ' Z.

• If f is an element of the free group F2 = 〈a, b〉 on two letters and x, y are elements of a group G, then
f(x, y) is defined as the image of f under the unique homomorphism F2 → G taking a to x and b to y.

• Every element of the group K3 can be written as f(σ2
1 , σ

2
2)(σ1σ2)3n where n ∈ Z and f ∈ F2.

• The group K4 is generated by the elements

x12 = σ2
1 x13 = σ2σ

2
1σ
−1
2 x23 = σ2

2 x24 = σ3σ
2
2σ
−1
3 x34 = σ2

3 .

The relations can be written down explicitly, but we do not need them.

3.2 Discrete version of GT

Given a braided monoidal category C with associativity and commutativity constraints a and c, we have
maps

Z× F2 × Z −→ K2 ×K3 −→ {potentially new assoc. and comm. constraints}

where the first arrow is the surjection taking (m, f, n) to (σ2m, f(σ2
1 , σ

2
2)(σ1σ2)3n) and the second map takes

(k, k′) to the associativity constraint a ◦ k′ and the commutivity constraint c ◦ k.
Of course, the new potential associativity and commutativity constraints may not satisfy the hexagon and

pentagon axioms, and thus may not define a braided monoidal structure on the underlying k-linear category
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of C. One can show that the only new potential associativity and commutativity constraints are those in the
image of the subset of Z× F2 × Z consisting of triples (m, f, n) where n = 0 and m, f satisfy the following:

f(X,Y ) = f(Y,X)−1 for any X,Y ∈ F2 (13)

f(X3, X1)Xm
3 f(X2, X3)Xm

2 f(X1, X2)Xm
1 = 1 for X1X2X3 = 1 in F2 (14)

f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23) in K4 (15)

Let
GTdisc = {(λ, f) ∈ λ ∈ 1 + 2Z× F2 | m = (λ− 1)/2 and f satisfy the equations above}.

Thus, every pair (λ, f) ∈ GTdisc defines a functorial way to construct from any braided monoidal category
C a new braided monoidal category C′ where the only change is the associativity and commutativity isomor-
phisms. In fact, any such construction arises from an element of GTdisc. Interpreting GTdisc in such a way
endows it with a monoid structure given by

(λ1, f1) · (λ2, f2) = (λ1λ2, f1(f2(X,Y )Xλ2f2(X,Y )−1, Y λ2) · f2(X,Y )).

We call GTdisc the discrete Grothendieck-Teichmüller semigroup. Unfortunately, we have:

Lemma 12. GTdisc = {0, 1}, {−1, 1}.

3.3 Pro-nilpotent version of GT

More interesting things happen when things are done topologically and pro-nilpotently. First, observe that
when C is the category of modules for a quasitriangular quasi-bialgebra (A,∆, ε,Φ, R), then applying (λ, f)
we obtain the category of modules for (A,∆, ε, Φ̄, R̄), where

R̄ = R.(R21R)m = (RR21)m.R Φ̄ = Φ.f(R21R12,Φ−1R32R23Φ).

If the characteristic of k is 0, then equations (13)-(15) still make sense if we replace λ with any element of
k and f with any element in the pro-nilpotent completion F nil

2 . Then f(X,Y ) is a formal completion of the
form exp(F (lnX, lnY )) where F is a Lie formal series over k.

We obtain a semigroup GT(k) called the k-pro-nilpotent version of the Grothendieck-Teichmüller group.
Let GT(k) ⊆ GT(k) be the group of invertible elements. Then GT(k) acts on the category topological
quasitriangular quasi-bialgebras over k[[h]].

The group GT(C) acts on the set S of Drinfeld associators as

(f, λ) · (φ, µ) = (f(φeAφ−1, eB)φ, µλ).

Here, (φ, µ) signifies that φ is a Drinfeld µ-associator.

Proposition 13. The action of GT(C) on S is free and transitive, making S a GT(C)-torsor.

Observe that the action of GT(k) on QUE algebras over k commutes with gauge transformations. In
the latter case, the associativity and commutativity constraints are do not change, they are just given by a
different sort of action. Indeed, gauge transformations lead to equivalent braided monoidal categories, while
the kinds of transformations we dicuss in this section lead to inequivalent braided monoidal categories.

As a final remark, we mention that there is a canonnical homomorphism Gal(Q/Q)→ GT(Q`) and there
are close relations between pro-finite version of the Grothendieck-Teichmüller group is closely related to the
absolute Galois group Gal(Q/Q).
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