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0 Introduction

The goal of this talk is to introduce (1) the notion of a quantum universal enveloping quasi-bialgebra (QUE
algebra for short) for a Lie algebra, (2) Drinfeld’s associators as a way to construct QUE algebras, and (3)
the Grothendieck-Teichmiiller group as the symmetries associators for braided monoidal categories. Section
1 gives background on quasi-bialgebras. In Section 2, we define QUE algebras as quantizations of Casimir
Lie algebras. We also define the holonomy Lie algebra t, in order to introduce the concept of a Drinfeld
associator. Section 3 explains how the process of changing the associativity and commutativity constraints
on a braided monoidal category, which maintaining the rest of the structure, leads to the definition of (the
pro-nilpotent version of) the Grothendieck-Teichmiiller group.

1 Quasi-bialgebras

This section introduces background on quasi-bialgebras. Quasi-bialgebras are generalizations of bialgebras
in which the coproduct is only associative up to a ‘coassociator’. As we will see, an advantage of quasi-
bialgebras is that they admit certain symmetries, called gauge transformations, making them more flexible
to work with than ordinary bialgebras. We assume familiarity with bialgebras, Hopf algebras, universal
R-matrices, braided monoidal categories, and rigid monoidal categories. The proofs given here are more
precisely only sketches of proofs; the audience is invited to fill in the details.

1.1 Definition of quasi-bialgebras

Let k be a field. Let A be an associative unital algebra over k. Fix homomorphisms A : A -+ A® A and
€: A — k. Observe that if U, V' are A-modules, then the tensor product U ® V' carries an action of A given
by the composition

A2y A® A= End(U) ® End(V) — End(U ® V).
Also, the field k becomes an A-module via the map e. Let A—mod denote the category of A-modules.

Question: when does this tensor product (with unit given by €) define a monoidal structure on A—mod?

In other words, we need A-linear asociativity isomorphisms ay,v,w : (U®@V)@W — U® (V@W) that satisfy
the pentagon and triangle axioms. Recall that, if (A4, A, €) is a bialgebra (in particular, A is coassociative),
then A—mod is monoidal with the trivial associator (u ® v) @ w — u ® (v ® w).

Idea: A weaker version of coassociativity for A can still be used to define a monoidal structure,
and leads to the notion of a quasi-bialgebra.

Definition. A quasi-bialgebra is an algebra A over k together with homomorphisms A : A -+ A ® A and
€: A — k, and an invertible element ® € A ® A ® A that satisfy the following equations:

(Id®@ A)oA)(a) =0 L (A®Id) o A)(a).®, forallac A 1

2
3
4

(AIdeId)(?).Id®Id® A)(P) = (P ®I1d).(Id ® A @ 1d)(P).(Id ® @)
(eId)oA=Id=(Id®¢)o A

)
)
)
(Id ® e ® 1d)(®) = 1. )

(
(
(
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Remark. The element @ is often called a ‘coassociator’. Any bialgebra is a quasi-bialgebra with the trivial
coassociator  =1® 1 ® 1.



Proposition 1. Let A be a quasi-bialgebra. Then A—mod is a monoidal category with the above tensor
product, unit object € : A — k, and associativity isomorphisms given by the (componentwise) action of ®:

aU,Vywi(U®V)®W—)U®(V®W)
(uRv)@wr— P(u® (v w)).

Proof. Equation (1) implies the maps ay,y,w are A-modules homomorphisms and equation (2) ensures that

they satisfy the pentagon axiom. Equation (3) implies that € : A — k is the unit object and equation (4)
implies the triangle axiom. O

Remark. There is a notion of a quasi-bialgebra where the unit constraints are loosened, but it seems to
occur more seldomly in practice, so we omit it here.

1.2 Quasi-fiber functors

In this subsection, we will see that so-called quasi-fiber functors provide a source of quasi-bialgebras.

Definition. A monoidal functor between monoidal categories C and D is a pair (F, J) consisting of a functor
F : C — D and a natural isomorphism J : F(—) ® F(—) — F(— ® —), called the monoidal structure on F
such that:

1. J is compatible with the associativity constraints, i.e. the following diagram commutes:

D
AF(U),F(V),F(W)

(F(U) & F(V)) ® F(7) FU) @ (F(V) & F(W)) %)
J®Id lld@J
FU®V)® F(W) FU) @ F(V @ W)
J l]
F(U V) o W) Hehvw) FU @ (VW)

Here, a® and aP are the associativity constraints in C and D, respectively.
2. F(le) =1p
3. J is compatible with the unit constraints (see Kassel, XI.4.1, diagrams (4.2) and (4.3)).
A quasi-monoidal functor is a pair (F,J) as above that satisfies items 2 and 3, but not necessarily item 1.

In this case, J is called a quasi-monoidal structure on F. We say that a natural transformation n : FF — F
is compatible with a quasi-monoidal structure J if Jy v o ny @ ny = nugy o Jy,v for all objects U,V in C.

Remark. A weaker version of the above definition is to require the data of an isomorphism F(1¢) — 1p,
and the appropriate modifications to the compatiblility with the unit constraints.

Definition. A (quasi-)fiber functor is a faithful and exact (quasi-)monoidal functor (F,.J) : C — Veci® from
a k-linear monoidal category C the the category of finite-dimensional vector spaces over k.

Let A—mod™ denote the category of A-modules that are finite-dimensional as k-vector spaces.

Proposition 2. Let (F,J):C — Vecid be a (quasi-)fiber functor. The algebra A = End” (F) of endomor-
phisms of F compatible with J naturally forms a (quasi-)bialgebra. There is a natural functor C — A—mod”?
which, under finiteness assumptions on C, is an equivalence of categories.



Proof. Abbreviate End’ (F) by End(F). The algebra structure on A = End(F) is given by the composition
of natural transformations. The comultiplication is defined as follows. First, since natural transformations
pull back under functors, there is a map A = End(F) — End(F o ®). Next, the natural isomorphism .J
defines an isomorphism End(F o ®) ~ End(® o (F x F)).

L

Vecld

Vec X Vec

S

Now, End(® o (F' x F)) ~ End(F) ® End(F) = A ® A. Putting these pieces together, we obtain a map
A: A — A®A. The counit is defined as the map € : A = End(F) — k taking a to ap(;) = ax € Endy(k) = k.
The coassociator ® on A = End’ (F) emerges from the possible failure of the commutativity of diagram 5. [

1.3 Quasitriangular quasi-bialgebras

Recall that a quasitriangular bialgebra is a bialgebra A with the extra structure of a universal R-matrix.
The universal R-matrix endows A—mod with the structure of a braided monoidal category. Similarly, there
is a notion of a universal R-matrix in the setting of quasi-bialgebras.

Definition. A quasitriangular quasi-bialgebra is a quasi-bialgebra together with an invertible element R €
A® A, called its universal R-matriz, that satisfies

A°(q) = R.A(a). R (6)
(A ®1d)(R) = 3 RisPrsaRaosPr (7)
(Id® A)(R) = @312R13P5 3 R12P123 (8)

If, in addition, R satisfies Ra; = Ry and (e®e)R = 1, then we say that (A, R) is a triangular quasi-bialgebra.

Here, if ® = )" ¢, ® ¢, ® ¢, then define @312 = > ¢ @ ¢ ® ¢, etc

Proposition 3. Let A be a quasitriangular (resp. triangular) quasi-bialgebra. Then A—mod has the natural
structure of a braided (resp. symmetric) monoidal category.

Proof. For U,V € A—mod, define

CvatU®V*>V®U
u®v > (12) o (pr ® pv)(R)(u ® v)

where (12) : U®V — V ® U is the usual switch map u ® v — v @ u, and py : A = End(U) and py : A —
End(V) are the action maps, so that py ® py defines a map A ® A — End(U) @ End(V) ~ End(U ® V).
Then equation (6) implies that ¢y is A-linear and equations (7) and (8) guarantee that the hexagon axioms
hold. O

Remark. A universal R-matrix R satisfies the so-called ‘quasi-quantum Yang Baxter equation’:

R12@312R13‘I>2_113R12‘I)123 = ¢321R23¢312R13¢5113,R12.



1.4 Gauge transformations

One advantage of quasi-bialgebras over ordinary algebras is the existence of certain symmetries on the
category of quasi-bialgebras.

Definition. Let (A, A, ¢, @) be a quasi-bialgebra. A gauge transformation is an invertible element F' € A® A
such that
(exId)(F)=1=(Id®e)(F).

For such an F', define:
AF(a) = F.A(a).F7H, O = Fo. (AR IA)(F).®.(Id® A)(F) " . Fy'.
If A is quasitriangular with universal R matrix R, define:
R = Fy . R.FL

Lemma 4. Let A be a quasi-bialgebra and let F € A ® A be a gauge transformation. Then (A, AF e, ®F)
is a quasi-bialgebra, denoted AY. If A is quasitriangular with universal R-matriz R, then R¥ is a universal
R-matriz for AF.

Definition. Let A and B be two (quasitriangular) quasi-bialgebras. If B = AF for some F € A® A as
above, then we say that A and B are twist equivalent or gauge equivalent and that B is obtained from A by
twisting the (quasitriangular) quasi-bialgebra structure by F'.

Note that twisting forms an equivalence relation on quasi-bialgebras. In fact, this equivalence extends to
the categorical level:

Proposition 5. Let A be a quasi-bialgebra. For any F as above, the categories A—mod and A¥ —mod are
equivalent as braided monoidal categories. If, moreover, A is quasitriangular, then A—mod and A —mod
are equivalent as braided monoidal categories.

Proof. To define an equivalence of monoidal categories, we must construct a functor f : A—mod — A —mod
as well as a natural isomorphism J : f(— ® —) — f(—) ® f(—) that satisfies certain axioms related to the
monoidal structure. Take f to be the identity, noting that A and AF are identical as algebras. For U,V
in A—mod, take Jy v to the be image of F in End(U ® V). The proof reveals that AT & and R were
defined to ensure the existence of this equivalence. O

Corollary 6. There is a bijective correspondence between gauge transformations on a quasi-bialgebra A and
quasi-monoidal structures J on the forgetful functor F : A—mod — Vecy.

Proof. Given a gauge transformation F, define Jyy v using the action of F'on U® V. Given a quasi-monoidal
structure J, define F' as the image of 1 ® 1 under Jy 4. O]

1.5 Quasi-Hopf algebras

Recall that a Hopf algebra is a bialgebra A over k together with an antihomomorphism S : A — A, called
the antipode, that satisfies the antipode axiom:

3" S(a,)al, = c(a)

for all @ € A, where A(a) = 3., a, ® al.. If U is an object in the category A—mod™ of finite-dimensional
modules for a Hopf algebra A, then A acts on the dual U* = Homy (U, k) by (a.§,u) = (£, S(a).u). The
antipode axiom ensure that the evaluation map U* ® U — k and the coevaluation map k — U ® U* are A-
linear. Moreover, the evaluation and coevaluation maps satisfy the rigidity axioms; consequently, A—mod™
has the structure of a rigid monoidal category. Recall also that if an antipode exists, then it is unique.



Previously we investigated a weaker version of coassociativity of a bialgebra that still produced the
monoidal structure on the category of modules. Similarly, a weakening of both the anitpode axiom and
coassociativity leads to a generalization of a Hopf algebra, called a quasi-Hopf algebra, whose category of
modules is a rigid monoidal category.

Definition. A quasi-Hopf algebra is a quasi bialgebra (A, A, ¢, @) together with an antihomomorphism S :
A — A and elements «, 8 € A that satisfy

Z S(a,)aal. = e(a)a, Z a,BS(a.) = €(a)s (9)

for all a € A, and

D S(6)adlBS@L) =1, > 6:BS(d})ad) = 1. (10)
s t

Here

Aa) =Y a,®a, = ¢, 06, = 64
T s t

A universal R-matrix for a quasi-Hopf algebra is a universal R-matrix for the underlying quasi-bialgebra. A
quasitriangular quasi-Hopf algebra is a quasi-Hopf algebra equipped with a universal R-matrix.

Observe that any Hopf algebra is a quasi-Hopf algebra with ® =1® 1® 1 and o = § = 1. The following
proposition follows easily by checking the rigidity axioms.

Proposition 7. Let (A, A, e, P,5,«, 8) be a quasi-Hopf algebra. The category A—mod’® is a rigid monoidal
category, where the evaluation and coevaluation maps are given by

Ur@U—k k—-UeU* (11)
ER@ur— (€ au) 1 Zﬂuz(@ﬁl (12)

A gauge transformation of a quasi-Hopf algebra is a gauge transformation of the underlying quasi-bialgebra,
together with a twisting of the elements o and S.

Definition. Let (A, Ae,®, S o, ) be a quasi-Hopf algebra and let F' = )", fi®g; be a gauge transformation
on A with inverse 3, f; ® g;. Define

of = ZS(‘E)Q‘%’ 5F = Zfzﬂs(gz)
j %

Proposition 8. Let (A, A,e,®,S,«, 8) be a quasi-Hopf algebra and F a gauge transformation on A. Then
(A, AF e, ®F S of BT) is a quasi-Hopf algebra.

Example. Let G be a finite group. Let C[G] be the group algebra of G, and let O(G) be the algebra of
complex-valued functions on G. Let D(G) = O(G)®C[G]. Given a (normalized) 3-cocyle ¢ : G x G x G — St
with values in the circle group, one can define a quasi-Hopf algebra structure on D(G), denoted D¢(G). It
turns out that D°(G) and D¢ (G) are twist-equivalent if and only if the cocycles ¢ and ¢ are cohomologous.
Hence, up to twist equivalence, the quasi-Hopf algebras D¢(G) are classified by H?(G, S'). This example is
due to Dijkgraaf, Pasquier, and Roche, and relates to conformal field theories with symmetry group G.

2 QUE algebras

Observe that all constructions of the previous section make sense for algebras over the ring k[[h]] of formal
power series in k, where all tensor products are replaced by completed tensor products. One can show that, if
A is a topological (quasitriangular) quasi-bialgebra, then A/hA inherits the structure of a (quasitriangular)
quasi-bialgebra. See Kassel, Section XVI.4 for more details.



2.1 Definition of QUE algebras

We work over C. Set K = C[[h]]. Let g be a Lie algebra over C, so U(g) is a bialgebra with the usual
coproduct A(z) = 1® 2 + 2 ® 1 and counit €(z) =1 for x € g. Set Ry =1®1 and @y =101®1
making U(g) into a quasitriangular quasi-bialgebra.

Definition. A quantum universal enveloping (QUE) algebra for g is a topological quasitriangular quasi-
bialgebra A = (A, A, e, ®, R) such that A is topologically free as a K-module and A/hA is isomorphic to
U(g) as a quasitriangular quasi-bialgebra.

Let A be a QUE algebra. Observe that:

e A~U(g)[[h]] as K-modules.
e The coproduct A and counit € on A are determined by the two conditions on A.
e We havethat P=1®1®1and R=1®1 mod h.

e The Lie algebra g is an invariant of A, obtained as the primitive elements of A/hA:

g={r€A/hA | Aj=1Rz+2®1}.

2.2 Casimir Lie algebras and quantization

We introduce another invariant of a QUE A:

Definition. Let A be a QUE algebra for g. The cannonical 2-tensor of A is the element t € U(g) ® U(g)
defined by
RyyR=1®1+ht mod h*.

Proposition 9. Let A be a QUE algebra for g and t € U(g) ® U(g) the cannonical 2-tensor. Then t is a
g-invariant symmetric element of g ® g and is invariant under gauge transformations.

Definition. A Casimir Lie algebra is a pair (g,t) consisting of a Lie algebra g together with a g-invariant
symmetric 2-tensor ¢+ € Sym?(g)?9. If ¢ is the cannonical element of a QUE algebra A for g, then (g,t) is
called the classical limit of A and A is called a guantization of (g,t).

Diagrammitcally:
quantization

QUE algebras Casimir Lie algebras (g,t)

classical limit

Example. In sly, we take t = 1/4(E® F + F @ E+ (H ® H)/2) coming from the Killing form (see Kassel,
XVIL1). The Drinfeld-Jimbo quantum group for sly is a quantization of the corresponding Casismir Lie
algebra.

Question: Given a Casimir Lie algebra (g,t), does a quantization exist?

We know that the quantization A is isomorphic to U(g)[[h]] as an algebra. To guarantee that Ro; R = 1+ht
mod h?, we set R = /2. Now the question becomes: can we find an associator ® that works?

Theorem 10 ([2]). There is a ® that quantizes the Casimir Lie algebra (g,t). It is unique up to to gauge
transformations F' € Sym?(A)S.



2.3 The holonomy Lie algebra

The strategy for finding @ relies on Kohno’s holonomy Lie algebra. Although it is not crucial to the main
ideas of this talk, this Lie algebra will appear in later talks.

Definition. Fix a positive integer n. The holonomy Lie algebra t,, is the Lie algebra over C generated by
X for 1 <4, <n, i# j with the following relations:

o X = X7t
o [X¥ X =0 for distinct 4,7, k,1
. [Xij + Xik,Xjk] = 0 for distinct 4, j, k

These relations are known as the infinitesimal braid relations. The holonomy Lie algebra can be realized
as follows. Let (g,t) be a Casimir Lie algebra, where g is simple. Write t = Y a ® b and define

=Y 1®..0104t10..010b01®...1 € U(g)*",

where a appears in the ith slot and b appears in the jth slot. Then the ¢¥ satisfy the inifinitesimal braid
relations, so X% — t is a representation of t,.

2.4 Drinfeld associators

Let C((z,y)) be the completed free algebra on 2 generators. There is a bialgebra structure on C{(z,y)) given
by A(z) =1®@z+2z®1and A(y) =1y +y® 1. If ¢ is an element of C{(z,y)) and a, b are elements of
a complete topological algebra A, then ¢(a,b) is defined as the image of ¢ under the unique homomorphism
C((x,y)) — S taking z to a and y to b.

Definition. Let A € C*. An element ¢ € C((x,y)) is called a Drinfeld A-associator if
e ¢ is group-like, i.e. A(¢) = ¢ ® ¢, and hence ¢ is invertible;
o d(y,x) = ¢(w,y) " in C{z,y));
e (pentagon equation) the following identity holds in @:
S(X12, X 1 XX + X2, X3) = (X2, X3) (X2 + X1, X2 4+ X3)g(X'2, X2);
e (hexagon equation) the following identity holds in C{{x,y)), where z = —z — y:
exp(Az/2)¢(z, x) exp(Az/2)P(y, 2) exp(Ay/2)d(x, y) = 1.

Let S denote the set of all A-associators, for A € C*.

Let (g,t) be a Casimir Lie algebra, let A be U(g)[[h]] as a complete topological algebra with coproduct A
and counit € extended from U(g). Define t12,t23 € g ® g ® g in the obvious way.

Theorem 11. Suppose ¢ is a Drinfeld A-associator. Let (g,t) be a Casimir Lie algebra. Then
(U(@)[[A], A, e, ® = (ht1a, htas), R = e"/?)

is a QUE algebra for (g,t).

Remark. Drinfeld constructed an explcit associator using the KZ equations (Pavel’s talk).



3 Grothendieck-Teichmiiller group

This section introduces the Grothendieck-Teichmiiller group. Due to time constraints, this section has not
been written as carefully as the previous sections.

3.1 Motivation and notation

Let C be a braided monoidal category. Thus, we have associativity and commutativity constraints
aU7V,WZU®(V®W)—>(U®V)®VV, coyv: UV =>VRU.

We consider the problem of changing the commutativity and associativity isomorphisms without changing
the rest of the structure of the category. A meaningful way to think about this problem is in terms of the
pure braid group.

Recall that the braid group B,, on n strands has a presentation:
B, ={o1,...,0,—1 | Braid relations : 10901 = 090109, etc.).

There is a surjective map from the braid group to the symmetric group B,, — 5,, taking the generator o; to
the permutation (¢,i+1). The pure braid group K, is defined as the kernel of this map B,, — S,,. Pictorially,
these are braids in which each strand begins and ends at the same node.

The pure braid group K3 acts on U ® (V @ W), for any three objects U, V,W of C. Thus, if k € Kj,
then we define a o k to be the new potential associativity constraint obtained from a by precomposing with
the action of k. Similarly, K5 acts on U ® V' and precomposing the commutativity isomorphism ¢ with the
action of k' € K5, we obtain a new potential commutativity constraint, denoted co k'.

[Picture defining a o k and co k'.]

Although the maps a ok and co k' are functorial, they are only potential associativity and commutativity
constraints since they may not satisfy the pentagon and hexagon equations. We return to this point below,
after introducing some notation:

The groups By and K, are free on one generator: B, = (o) ~ Z and K, = (0?) ~ Z.

e If f is an element of the free group Fy = (a,b) on two letters and x,y are elements of a group G, then
f(z,y) is defined as the image of f under the unique homomorphism Fy — G taking a to x and b to y.

Every element of the group K3 can be written as f(07,03)(0102)%" where n € Z and f € Fy.

The group K, is generated by the elements
2 2 _—1 2 2 _—1 2
T12 = 07 X13 = 02010, T23 = 09 T24 = 030509 T34 = 03.

The relations can be written down explicitly, but we do not need them.

3.2 Discrete version of GT

Given a braided monoidal category C with associativity and commutativity constraints a and ¢, we have
maps
Z x Fy x Z — Ko x K3 — {potentially new assoc. and comm. constraints}

where the first arrow is the surjection taking (m, f,n) to (0®™, f(0?,02)(0102)

(k, k") to the associativity constraint a o k¥’ and the commutivity constraint ¢ o k.

3n) and the second map takes

Of course, the new potential associativity and commutativity constraints may not satisfy the hexagon and
pentagon axioms, and thus may not define a braided monoidal structure on the underlying k-linear category



of C. One can show that the only new potential associativity and commutativity constraints are those in the
image of the subset of Z x Fy x Z consisting of triples (m, f,n) where n = 0 and m, f satisfy the following:

f(X,Y) = f(Y,X) ! for any X,Y € F) (13)
F( X3, X1) X35" f( X2, X3) X" f( X1, Xo) X" =1 for X1 X X3 =1in I (14)
f(@12, 223724) f(213223, T34) = f(w23, 234) f(T12713, T24234) [ (712, T23) in Ky (15)

Let
GTaise ={(N\, f) €X€14+2Z x Fy | m = (A—1)/2 and f satisfy the equations above}.

Thus, every pair (), f) € GTgisc defines a functorial way to construct from any braided monoidal category
C a new braided monoidal category C’ where the only change is the associativity and commutativity isomor-
phisms. In fact, any such construction arises from an element of GTgjsc. Interpreting GTgisc in such a way
endows it with a monoid structure given by

(A1, f1) - (A2 f2) = (MAa, fi(f2(X, V)X f(X,Y) 7L YR2) - fo( X, Y)).
We call GTgisc the discrete Grothendieck-Teichmiiller semigroup. Unfortunately, we have:

Lemma 12. GT g, = {0,1},{-1,1}.

3.3 Pro-nilpotent version of GT

More interesting things happen when things are done topologically and pro-nilpotently. First, observe that
when C is the category of modules for a quasitriangular quasi-bialgebra (A, A, e, ®, R), then applying (A, f)
we obtain the category of modules for (A, A e, @, R), where

R=R.(R*R)™ = (RR*")™ R  &=a&.f(R*R"? & 'R*R*d).

If the characteristic of k is 0, then equations (13)-(15) still make sense if we replace A with any element of
k and f with any element in the pro-nilpotent completion F3'. Then f(X,Y) is a formal completion of the
form exp(F(In X,InY’)) where F is a Lie formal series over k.

We obtain a semigroup GT(k) called the k-pro-nilpotent version of the Grothendieck-Teichmiiller group.
Let GT(k) € GT(k) be the group of invertible elements. Then GT(k) acts on the category topological
quasitriangular quasi-bialgebras over k[[h]].

The group GT(C) acts on the set S of Drinfeld associators as

(f:X) (1) = (f(geo™", eP)p, ).
Here, (¢, u) signifies that ¢ is a Drinfeld p-associator.

Proposition 13. The action of GT(C) on S is free and transitive, making S a GT(C)-torsor.

Observe that the action of GT(k) on QUE algebras over k commutes with gauge transformations. In
the latter case, the associativity and commutativity constraints are do not change, they are just given by a
different sort of action. Indeed, gauge transformations lead to equivalent braided monoidal categories, while
the kinds of transformations we dicuss in this section lead to inequivalent braided monoidal categories.

As a final remark, we mention that there is a canonnical homomorphism Gal(Q/Q) — GT(Qy) and there
are close relations between pro-finite version of the Grothendieck-Teichmiiller group is closely related to the
absolute Galois group Gal(Q/Q).
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