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Abstract

Given a representation of a finite group G on a complex vector space V , one may
ask whether it is the complexficiation of a representation of G on a real vector space.
Another question is whether the representation is quaternionic, i.e. whether V has the
structure of a quaternion module compatible with the action of G. The answers to these
structural questions are closely related to the possible existence of a nondegenerate
bilinear form on V fixed by G. We describe this relationship as well as the Schur
indicator for distinguishing between various types of representations.

1 Definitions

If V is a vector space over a field F , we write GL(V ) or GL(V, F ) for the group of invertible
F -linear transformations of V . We reserve the term “representation” for a linear action of
a finite group G on a complex vector space V , that is, a homomorphism G→ GL(V,C).

Let V0 be a real vector space, G a finite group, and ρ : G→ GL(V0,R) a homomorphism.
Consider the complex vector space V defined as

V = V0 ⊗R C

obtained by extending scalars from R to C. The linear action of G on V0 naturally extends
to a linear action on V given by

g · (v ⊗ λ) = (g · v)⊗ λ.

So we obtain a representation G→ GL(V,C).

Definition. Let V be a complex vector space and G a finite group. A representation of G
on V is real if there exists a real vector space V0 and a homomorphism G→ GL(V0,R) such
that the representation V0 ⊗R C is isomorphic to V .

Consequently, an n-dimensional representation V is a real representation if and only if
there is an n-dimensional real subspace V0 of V that is invariant under the action of G. Since
tensoring with C over R is just extending scalars, the character of any real representation
is real. This can be seen explicitly by choosing a basis for V0 and writing elements of G as
matrices.
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Example. Let G = 〈x | x4〉 be a cyclic group of order 4, and consider the homomorphism
G→ GL2(R) given by

x 7→
[

0 1
−1 0

]
.

The resulting real representation of G on C2 is given by the same map, but now we think
of the matrices as elements of GL2(C) instead of GL2(R). Under a change of basis, the
representation on C2 can be written as

x 7→
[
i 0
0 −i

]
.

Example. Let G be a nonabelian subgroup of SU(2). For instance, identify SU(2) withe
the unit sphere in the quaternions and let

G = Q8 = {±1,±i,±j,±k}.

We argue that the inclusion G ↪→ SU(2) ⊂ GL2(C) is not a real representation. Toward a
contradiction, suppose there is a 2-dimensional real subspace V0 of C2 invariant under the
action of G. Fix a basis B for V0 as a real vector space, so each g ∈ G acts as a matrix in
this basis. Since V0 is invariant under the action of each g ∈ G, the entries of the matrix g
are real.

On the other hand, B is a basis for C2 as a complex vector space, and in this basis g is
a matrix in SU(2). The real matrices in SU(2) form a copy of SO(2); it follows that G is a
subgroup of SO(2) ' S1. This is a contradiction since S1 is abelian and G is nonabelian.

Definition. A quaternionic representation of a finite group G is a complex representation
V of G with a G-invariant conjugate linear endomorphism ψ such that ψ2 = −Id.

Thus, a quaternionic representation V of G has the structure of a module over the
quaternions H where i ∈ H acts as left multiplication by i ∈ C, j ∈ H acts by ψ, and k ∈ H
acts by the composition of j and i. Moreover, the action of the quaternions on V commutes
with the action of G on G.

Example. The representation of Q8 on C2 in the previous example is a quaternionic rep-
resentation with ψ defined by setting

ψ(1, 0) = (0,−1) ψ(0, 1) = (1, 0)

and extending to all of C2 using conjugate linearlity.

Example. Consider the 1-dimensional representation of the cyclic group G = 〈x | x3〉 given
by

ρ : Z/3Z→ GL1(C) = C×

k 7→ ωk

where ω is a primitive third root of unity. Since ω is not real, multiplication by ρ does not
preserve any 1-dimensional real subspaces. Hence ρ is not a real representation. To see that
ρ is not a quaternionic representation, suppose ψ is a conjugate-linear endomorphism of C.
Then, for any x ∈ C, we have ψ(ωx) = ω̄ψ(x), so ψ is not invariant under Z/3Z.
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2 Bilinear forms fixed by G

In this section we show that real and quaternionic representations always have a nonde-
generate bilinear form fixed by G. For real representations, the form is symmetric; it is
skew-symmetric for quaternionic representations.

By convention, Hermitian forms are conjugate linear in the first coordinate and linear
in the second coordinate. The Hermitian form H is positive definite if H(v, v) > 0 for
nonzero v. In particular, positive definite Hermitian forms are nondegenerate. For the sake
of conciseness, a “Hermitian form” will henceforth mean a positive definite Hermitian form.

Every representation V of G has a Hermitian form that is fixed by G. To see this, begin
with any Hermitian form H0 on V . For instance, choose a basis for V and identify H with
the identity matrix. Define a form H0 by

H(v, w) =
∑
g∈G

H0(gv, gw).

It is straighforward to check that H satisfies the desired properties.
A key point is that there is not always a nondegenerate bilinear form that is fixed by

G. The averaging argument above does not preserve nondegeneracy since the sum of a
collection of nonzero complex numbers could be zero. However, such a form exists for real
representations, as the following proposition demonstrates.

Proposition. If V is a real representation, then there is a nondegenerate symmetric bilinear
form on V preserved by G. If V is irreducible, then this form is unique up to scaling.

Proof. Say V = V0 ⊗R C. Start with any symmetric positive definite bilinear form B0 on
V0. For example, choose a basis and identify B0 with the identity matrix. Average over G
to get a new positive definite symmetric bilinear form B on V0 that is preserved by G:

B(v, w) =
1
|G|

∑
g∈G

B0(gv, gw).

Now extend B to V = V0 ⊗R C by

B(v ⊗ λ,w ⊗ µ) = λµB(v, w).

A short computation verifies that B has the desired properties.
Suppose B̃ is another nondegenerate G-invariant symmetric bilinear form on V . Then

B and B̃ define G-linear isomorphisms φ and φ̃ between V and V ∗. The composition

V
φ−→ V ∗

φ̃−1

−→ V

is a G-linear. Schur’s lemma now implies that B and B̃ differ by a scalar.

Proposition. If V is an quaternionic representation, then there is a nondegenerate skew-
symmetric bilinear form on V preserved by G. If V is irreducible, then this form is unique
up to scaling.
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Proof. The last statement follows from arguments similar those in the previous proof, which
apply to any nondegenerate bilinear form on a irreducible representation.

Let ψ be the conjugate linear G-invariant endomorphism of V with ψ2 = −1. Let H be
a Hermitian form on V fixed by G. Define

B(v, w) = H(ψ(v), w).

Then B is a bilinear form since ψ is conjugate linear and H is conjugate linear in the first
factor.

To see thatB is nondegenerate, supposeB(v, w) = 0 for all w ∈ V . ThenH(ψ(v), w) = 0
for all w ∈ V . The nondegeneracy of H implies that ψ(v) = 0. Since ψ is invertible (its
inverse is ψ3) we conclude that v = 0. Thus B is nondegenerate. Similarly, the bilinear
form B′(v, w) defined as

B′(v, w) = B(v, w)

is nondegenerate.
Assume first that V is irreducible. Then Schur’s lemma implies that B and B′ differ by

a scalar. Explicitly, there is a scalar λ ∈ C such that

B(v, w) = λB′(v, w) = λB(w, v)

for all v, w ∈ V . We argue the λ = −1, which will imply that B is skew-symmetric.
From the definition of B, we have

H(ψ(v), w) = λH(ψ(w), v) = λ2H(ψ(v), w)

for all v, w ∈ V . Thus λ2 = 1. Observe that

H(ψ(v), ψ(v)) = λH(ψ2(v), v) = −λH(v, v)

for any v ∈ V . Since H is positive definite, it follows that λ is real and negative. We must
have λ2 = 1, so the only possibility is λ = −1.

Now suppose V is not irreducible. The irreducible factors of V are quaternionic rep-
resentations themselves since ψ commutes with the action of G. The discussion in the
irreducible case implies that the restriction of B to an irreducible factor is skew-symmetric.
The factors can be chosen to be orthogonal with respect to the Hermitian form H, and
hence with respect to B. Therefore, B skew-symmetric on all of V .

We will soon prove that a representation with a nondegenerate bilinear form fixed by
G must be real or quaternionic. In particular, the converse of the first statements of both
propositions in this section is true.

3 Bilinear forms for real-valued characters

As discussed earlier, necessary condition for a representation V to be real is that its character
take on real values, i.e. χV (g) ∈ R for all g ∈ G. This condition is not sufficient, as the
following example shows.

4



Example. The group SU(2) consists of matrices of the form[
a b
−b̄ ā

]
where a, b ∈ C satisfy |a|2 + |b|2 = 1. Hence the trace of any element of SU(2) is real.
The representation of G = Q8 considered in a previous example therefore has real-valued
character, even though it is a not real representation.

We will prove in this section that a representation with real-valued character is either
real or quaternionic. The first step is to show that the possession of real-valued characters
is equivalent to the existence of a nondegenerate bilinear form fixed by G. Then we will
argue that this bilinear form is either symmetric, in which case the representation is real,
or skew-symmetric, in which case the representation is quaternionic.

Proposition. A representation V has real-valued characters if and only if there is a non-
degenerate bilinear form on V fixed by G.

Proof. In general, the characters of V and V ∗ are related by conjugation. So the character
of V is real-valued if and only if V and V ∗ have the same characters. Since a representation
is determined by its character, the character of V is real-valued if and only if V and V ∗ are
isomorphic representations of G.

Suppose φ : V → V ∗ be a G-linear isomorphism. Define a bilinear form on V as
B(v, w) = φ(v)(w). An quick computation verifies that B is nondegenerate and fixed by G.

Conversely, if there is a nondegenerate bilinear form B fixed by G, then it defines a
G-module isomorphism between V and V ∗ by v 7→ B(v,−).

Assume that the character of V is real-valued and φ : V → V ∗ is a G-linear isomorphism
as in the preceding proof. Another nondegenerate bilinear form on V fixed by G is given by
B′(v, w) = φ(w)(v) = B(w, v). Since V is irreducible, these forms are related by a scalar,
say ε. Thus,

B(v, w) = εB′(v, w) = ε2B(v, w),

so ε2 = 1. In other words, B is either symmetric (ε = 1) or skew symmetric (ε = −1).
Let H be a Hermitian form on V fixed by G, so H defines an G-linear isomorphism

H : V → V ∗. Define a map ψ on V as the composition

ψ : V
φ→ V ∗

H−1

→ V.

Note that ψ is conjugate linear and commutes with the action of G. Therefore ψ2 : V → V
is G-linear. By Schur’s Lemma, ψ2 = λId.

Observe that

H(ψ(v), w) = B(v, w) = εB′(v, w) = εB(w, v) = εH(ψ(w), v)

for any v, w ∈ V . So in particular we have

H(ψ(v), ψ(v)) = εH(ψ2(v), v) = ελH(v, v).

Since H is positive definite, the product ελ must be real and positive. In particular, λ is
real with sign equal to ε. Without any loss, we may replace H by

√
|λ|H in order to obtain,

after a straightforward computation, that ψ2 = εId. We have two cases:
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• Suppose first that ε = 1. Then ψ2 = Id and ψ is conjugate linear; in particular,
it is R-linear. View V as a real vector space (of double the dimension), so ψ is a
R-linear transformation of V of order 2. Thus, ψ is diagonalizable with eigenvalues
±1. Decompose V into eigenspaces for the action of ψ as

V = V+ ⊕ V−

where ψ acts on the first factor as the identity and on the second as multiplication
by −1. Since ψ is conjugate linear, it is easy to show that iV+ = V− and iV− = V+.
So the (real) dimensions of V+ and V− are equal to each other, and hence to the
(complex) dimension of V . Moreover, V+ is G-invariant: if v ∈ V+ and g ∈ G, then

ψ(gv) = gψ(v) = gv,

since the action of G commutes with ψ. Therefore, V is real representation.

• Now suppose that ε = −1. Then, equipped with ψ, V becomes a quaternionic repre-
sentation of G.

The table below summarizes the results so far. By a slightly confusing convention, a
representation whose character takes non-real values is called complex.

Type of character nondegenerate bilinear
representation values form fixed by G?

Real real Yes, symmetric

Quaternionic real Yes, skew-symmetric

Complex not all real No

4 The Schur indicator

We begin with the definition of the Schur indicator. We will see later in the section how the
Schur indicator distinguishes between the types of representations given in the table above.

Definition. Let V be a representation of G with character χ. The Schur indicator for V
is defined as

σ(V ) =
1
|G|

∑
g∈G

χ(g2).

Bilinear forms are elements of the tensor product V ∗ ⊗ V ∗. If V is a representation G,
then V ∗ ⊗ V ∗ inherits an action of G in a standard way (the precise description is omitted
here). There is a canonical decomposition of V ∗ ⊗ V ∗ into G-invariant subspaces:

V ∗ ⊗ V ∗ ' Sym2V ∗ ⊕
∧

2 V ∗.
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That is, any bilinear form on V is the sum of a symmetric and a skew-symmetric bilinear
form. The space of forms fixed by G is

(V ∗ ⊗ V ∗)G ' (Sym2V ∗)G ⊕ (
∧

2 V ∗)G.

If χ is the character of V and χtriv is the character of the trivial representation, then, using
the formulas for the characters of the symmetric and exterior powers, we obtain

dim(Sym2V ∗)G = 〈χtriv, χSym2V ∗〉 =
1

2|G|
∑
g∈G

(χ(g)2 + χ(g2))

=
1

2|G|
∑
g∈G

χ(g)2 +
σ(V )

2
.

Similarly,

dim(
∧

2 V ∗)G = 〈χtriv, χV2 V ∗〉 =
1

2|G|
∑
g∈G

(χ(g)2 − χ(g2))

=
1

2|G|
∑
g∈G

χ(g)2 − σ(V )
2

.

Consequently,

dim(V ∗ ⊗ V ∗)G =
1
|G|

∑
g∈G

χ(g)2.

Assume that V is irreducible. If the character χ of V is real-valued, then there is a
nondegenerate bilinear form fixed by G, and it is unique up to scaling. Thus

1 = dim(V ∗ ⊗ V ∗)G =
1
|G|

∑
g∈G

χ(g)2.

This form is symmetric if and only if V is real, in which case we must have

1 = dim(Sym2V ∗)G =
1
2

+
σ(V )

2
,

so σ(V ) = 1. The form is skew-symmetric if and only if V is quaternionic, in which case

1 = dim(
∧

2 V ∗)G =
1
2
− σ(V )

2
,

so σ(V ) = −1. The last step is to show that complex represntations (i.e. representations
whose characters take on non-real values) have Schur indicator 0. For this we require the
following consequence of Schur’s lemma.

Lemma. Any nonzero G-invariant bilinear form on a irreducible representation of G is
nondegenerate.

Proof. Let B be nonzero G-invariant bilinear from on V , so B defines a non-zero G-linear
homomorphism φ : V → V ∗. If V is irreducible, then so is V ∗. By Schur’s lemma, φ is an
isomorphism. Hence B is nondegenerate.
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Now suppose that V is a complex representation. Then, by previous results, there is no
nondegenerate bilinear G-invariant form on V . The lemma implies that (V ∗ ⊗ V ∗)G = 0.
Hence

1
|G|

∑
g∈G

χ(g)2 = 0 and (Sym2V ∗)G = 0,

from which it follows that σ(V ) = 0.

5 Overview of the main results

Each irreducible representation V of G lends itself to one of the descriptions below.

• The character of V is real-valued and there is a symmetric nondegenerate bilinear
form on V preserved by G. In this case V is a real representation and σ(V ) = 1.

• The character of V is real-valued and there is a skew-symmetric nondegenerate bilinear
form on V preserved by G. In this case V is a quaternionic representation and
σ(V ) = −1.

• The character of V takes on non-real values. In this case V is a complex representation,
there is no nondegenerate bilinear form on V preserved by G, and σ(V ) = 0.

The types of representations and their key properties are summarized in the table below.

Type of character nondegenerate bilinear
representation values form fixed by G? Schur indicator

Real real Yes, symmetric 1

Quaternionic real Yes, skew-symmetric −1

Complex not all real No 0
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