Notes on the Radon transform

IORDAN GANEV

This document stems out of the author's notes from reading the paper 'Characteristic varieties of character sheaves' by I. Mirković and K. Vilonen [VM88], and from discussions with Quoc Ho and Anton Mellit. The author claims no originality.

1 Preliminaries

Let G be a connected reductive group, B a Borel subgroup, and T a maximal torus contained in B. Let N be the unipotent radical of B, so that $B = N \rtimes T$. Let $W = N_G(T)/T$ be the Weyl group and $n = \dim(G/B)$. We denote by D(X) the bounded derived category of constructible $\overline{\mathbb{Q}}_{\ell}$ -sheaves on an algebraic variety X. For a morphism $f : X \to Y$, we have the usual functor $f_*, f_!, f^*$, and $f^!$ between D(X) and D(Y). Recall that if f is proper then $f_* = f_!$ and if f is smooth with fibers of dimension d then $f^! = f^*[2d]$. In the latter case, we set $f^0 = f^![d]$, which is an exact functor with respect to the perverse t-structure, and hence preserves perverse sheaves.

2 The Radon transform

We follow Section 3 of [VM88]. There is a right action of T on G/N is given by $(xN) \cdot t = xtN$. This is well-defined since T normalizes N. We consider the diagonal right action of T on $G/N \times G/N$

Definition 2.1. We denote by Y the quotient of $G/N \times G/N$ by the right diagonal action of T.

Lemma 2.2. There is a well-defined map

$$r: G \times G/B \to Y = (G/N \times G/N)/T$$

given by $(g, xB) \mapsto [gxB, xB]$. The map r is a fibration with fibers isomorphic to N.

Proof. To see that this map is well-defined, suppose xB = yB. Then y = xb for some $b = tn = (t,n) \in B = T \ltimes N$. It follows that (gyN, yN) = (gxtnN, gxtnN) = (gxtN, gxtN), which is equivalent under the diagonal right T-action to (gxN, xN). Finally, one computes that the fiber of r over [xN, yN] to be $xNy^{-1} \times \{yN\}$.

Consider the diagram:

(2.1)

where q(q, xB) = q is the projection map.

Definition 2.3. The Radon transform is the functor $R = r_*q^* : D(G) \to D(Y)$. We also define a functor $\check{R} = q_*r^* : D(Y) \to D(G)$.

We note that both maps are smooth with fibers of dimension n, and that q is proper, we have that $r^! = r^*[2n], q^! = q^*[2n], q_* = q_!$, and $\check{R}[2n] = q^! r_!$ is left adjoint to R.

Definition 2.4. The category D(G) carries a convolution tensor structure defined as $-\star - = (p_2)_*(p_1^*(-) \otimes m^*(-))$ where $m : G \times G \to G$ is given by $m(g,h) = g^{-1}h$ and $p_1, p_2 : G \times G \to G$ are the projection maps.

Remark 2.5. One can replace m^* by $m^0 = m! [-\dim G]$ in order to guarantee that the convolution of perverse sheaves is perverse.

Definition 2.6. Let $\mathcal{N} \subseteq G$ be the unipotent cone of G, and let

$$\sigma: \tilde{\mathcal{N}} = \{(g, xB) \in G \times G/B \mid x^{-1}gx \in N\} \to G$$

be the Springer map, which is a resolution of the unipotent cone \mathcal{N} , defined by $\sigma(g, xB) = g$. Let $\operatorname{Spr} = \sigma_* \overline{\mathbb{Q}}_{\ell \tilde{\mathcal{N}}}$ be the Springer sheaf.

Proposition 2.7. We have that

$$\check{R} \circ R = \operatorname{Spr} \star -$$

as endofunctors of D(G).

Proof. To compute the composition $\check{R} \circ R$, consider the following diagram:

where S is the fiber product $(G \times G/B) \times_Y (G \times G/B)$. Explicitly,

$$S = \{(g,h,xB,yB) \in G \times G \times G/B \times G/B \ : \ [gxN,xN] = [hyN,yN] \in (G/N \times G/N)/T\}$$

Thus, if $(g, h, xB, yB) \in S$, then there exists $t \in T$ such that gxN = hytN and xN = ytN. These equations imply that gxN = hxN and xB = yB, and hence we obtain the following equivalent definition of S:

$$S = \{(g, h, xB) \in G \times G \times G/B : gxN = hxN \in G/N\}$$

We will also use the diagram:

where $\pi = q_1 \times q_2$. The total space $\tilde{\mathcal{N}}$ of the Springer resolution can be identified with the preimage of $1 \times G$ under the map π , and that π restricts to σ along this preimage. It is straightforward to verify that the following diagram is Cartesian:

Finally, we compute:

$$\begin{split} \check{R}R(\mathcal{F}) &= (q_*r^*r_*q^*)(\mathcal{F}) = ((q_2)_*q_1^*)(\mathcal{F}) = ((p_2)_*\pi_*\pi^*p_1^*)(\mathcal{F}) = (p_2)_*\left[p_1^*\mathcal{F}\otimes\pi_*\overline{\mathbb{Q}}_{\ell,S}\right] \\ &= (p_2)_*\left[p_1^*\mathcal{F}\otimes\pi_*\nu^*\overline{\mathbb{Q}}_{\ell,\tilde{\mathcal{N}}}\right] = (p_2)_*\left[p_1^*\mathcal{F}\otimes m^*\sigma_*\overline{\mathbb{Q}}_{\ell,\tilde{\mathcal{N}}}\right] = (p_2)_*\left[p_1^*\mathcal{F}\otimes m^*\mathrm{Spr}\right] = \mathcal{F}\star\mathrm{Spr} \end{split}$$

where we base change in the second equality, Diagram 2.2 in the third, the projection formula in the fourth, and base change along Diagram 2.3 in the sixth. \Box

Remark 2.8. Note that S and $G \times G$ each carry a G action by left translations in the first two factors and ν is equivariant. Furthermore, S and G, and can be identified (using the maps ν and m) with $G \times \tilde{\mathcal{N}}$ and $G \times G$, respectively, where G acts freely on the first factor. Under these identifications, ν becomes $1 \times \sigma$.

3 The stacky version of the Radon transform

The group G acts on each of the spaces in Diagram 2.1. Explicitly, G acts on G by conjugation, on $G \times G/B$ by conjugation in the first factor and left translation in the second, and on Y by left translations in both factors. Quotienting out by the action of G, we obtain the stacky version of Diagram 2.1:

The convolution on G can be defined using the stacky diagram:

where $\frac{G \times G}{G}$ is the quotient of $G \times G$ by the simultaneous conjugation action of G. Let $G \times_B N$ denote the balanced product of G and N over B, where B acts by right translations on G and by conjugation on N. There is an isomorphism

$$\tilde{\mathcal{N}} \to G \times_B N$$

 $(g, xB) \mapsto [x, x^{-1}gx].$

Under this isomorphism, the action of G on $\tilde{\mathcal{N}}$ is identified with the left translation action of G on $G \times_B N$, and taking the quotient, we obtain

$$G \setminus \tilde{\mathcal{N}} = G \setminus (G \times_B N) = \frac{N}{B}$$

that is, the quotient of N by the conjugation action of B. Thus, the stacky version of the Springer resolution is the map

$$\sigma: \frac{N}{B} \longrightarrow \frac{G}{G}$$

induced by the inclusion of N into G. Finally, let $\frac{G \times N}{B}$ denote the quotient of $G \times N$ by the simultaneous conjugation action of B.

Lemma 3.1. We have:

1. There is a Cartesian diagram:

In other words, the fiber product of $\frac{G}{B}$ with itself over $N \setminus \frac{G}{T} / N$ can be identified with $\frac{G \times N}{B}$.

2. There is a Cartesian diagram:

where the left map takes the equivalence class of (g, n) to that of $(g, n^{-1}g)$.

Sketch of proof. To see the first claim, suppose $[g], [h] \in \frac{G}{B}$ are *B*-conjugacy classes whose images in $N \setminus \frac{G}{T}/N$ coincide. Then there exist $n_1, n_2 \in N$ and $t \in T$ such that $h = n_1 t g t^{-1} n_2$. Let $b = t^{-1} n_1^{-1}$. Then $[h] = [bhb^{-1}] = [gt^{-1}n_1n_2t]$. Thus we obtain an element $n = t^{-1}n_1n_2t \in N$. The pair (g, n) is determined up to simultaneous *B*-conjugacy. To see the second claim, suppose $[g,h] \in \frac{G \times G}{G}$ and $[n] \in \frac{N}{B}$ are such that gh^{-1} and n are conjugate in G. Then $h = x^{-1}n^{-1}xg$ for some $x \in G$. Thus, the conjugacy class of h is determined by g and n, and the pair (g, n) is determined up to simultaneous *B*-conjugacy.

4 A different version of the Radon transform

This section is based on communication with A. Mellit. An equivalent version of Diagram 3.1 is given by:

where in all cases we take the quotient by the diagonal left and right multiplication actions. In the case of $B \times B$ acting on T, we have $(b_1, b_2)t = \pi(b_1)t\pi(b_2^{-1})$, where $\pi : B \to T$ is the quotient map, and so the stabilizer of $1 \in T$ is given by the fiber product of B with itself over T, that is:

$$B \times_T B = \{(b_1, b_2) \mid \pi(b_1) = \pi(b_2)\} \simeq N \times T_\Delta \times N.$$

Let $G \setminus (G \times G) \times_G (G \times G)/G$ denote the balanced product $G \setminus (G \times G)$ with $(G \times G)/G$ under the internal action of G, that is, the quotient of $G \times G \times G \times G$ by the action of $G \times G \times G$ given by $(x, y, z) \cdot (g_1, g_2, h_1, h_2) = (xg_1y^{-1}, xg_2y^{-1}, yh_1z^{-1}, yh_2z^{-1})$. The orbits are identified with the orbits of G on $G \times G$ acting by simultaneous conjugation, via the map $(g_1, g_2, h_1, h_2) \mapsto (g_2^{-1}g_1, h_1h_2^{-1})$.

Lemma 4.1. We have:

1. There is a Cartesian diagram:

In other words, the fiber product of $B \setminus (G \times B)/B$ with itself over $B \setminus (G \times T)/B$ can be identified with $B \setminus (G \times (B \times_T B))/B$.

2. There is a Cartesian diagram:

$$\begin{array}{ccc} B \setminus (G \times (B \times_T B)) / B & \longrightarrow & B \setminus (B \times_T B) / B \\ & & & \downarrow \\ G \setminus (G \times G) \times_G (G \times G) / G & \longrightarrow & G \setminus (G \times G) / G \end{array}$$

where the left map is given by $[g, b_1, b_2] \mapsto [g, b_1, g, b_2]$, the bottom map by $[g_1, g_2, h_1, h_2] \mapsto [g_2^{-1}g_1h_2, h_1]$, the top map is the projection onto the last two factors, and the right map is induced by the inclusion of $B \times B$ into $G \times G$.

Sketch of proof. The first claim follows from the non-equivariant version: $(G \times B) \times_{G \times T} (G \times B) = G \times (B \times_T B)$. The second claim reduces to the proof of the second item in Lemma 3.1.

Note that B acts by conjugation on $N = \ker(\pi)$. The total space of the Springer resolution is $\tilde{\mathcal{N}} = G \times_B N$, where we take the balanced product for the right multiplication action of B on G, and the conjugation action of B on N. The quotient of $\tilde{\mathcal{N}}$ by the left multiplication action of G is identified with the quotient $\frac{N}{B}$ of N by the conjugation action of B. We see the connection with Springer theory through the following lemma.

Lemma 4.2. We have $B \setminus (B \times_T B) / B = \frac{N}{B}$.

Proof. Indeed, one checks that the map

$$B \times_T B \to N,$$
 $(b_1, b_2) \mapsto b_1 b_2^{-1}$

is well-defined and surjective, and the preimage of any *B*-orbit on *N* is a $B \times B$ orbit on $B \times_T B$. \Box

5 Local systems

In this section, we clarify a claim appearing in Section 2.1 of [VM88]. For each $w \in W$, we fix a lift $\dot{w} \in N_G(T) \subseteq G$. We define the *w*-twisted conjugation action of T on itself as:

$$a: T \times T \to T$$
$$s, t \mapsto \dot{w} s \dot{w}^{-1} t s^{-1},$$

which is well-defined since $\dot{w} \in N_G(T)$ and T is abelian. We will consider the w-twisted adjoint quotient $\frac{T}{T^w}$. We make sense of the following claim¹.

¹The argument is based discussions with Q. Ho.

Lemma 5.1. There is natural bijection between the set of (isomorphism classes of) rank one local systems on $\frac{T}{T^w}$ and the set of (isomorphism classes) of local systems on T that are w-invariant.

Proof. We identify the fundamental group of T with the cocharacter lattice $X_*(T)$, and write $\alpha \mapsto w(\alpha)$ for the action of $w \in W$ on $\alpha \in X_*(T)$. A rank one local system on T amounts to a representation of the fundamental group $\pi_1(T) \simeq X_*(T)$ into \mathbb{C}^{\times} (modulo the trivial conjugation action of \mathbb{C}^{\times} on itself). Thus, we have an action of W on the set of rank one local systems on T. A rank one local system on the w-twisted adjoint quotient $\frac{T}{T^w}$ is rank one local system on T together with an isomorphism between the pullbacks under a and under the projection $\operatorname{pr}_2: T \times T \to T$. In terms of fundamental groups, we have that a rank one local system on $\frac{T}{T^w}$ is representation $\rho: X_*(T) \to \mathbb{C}^{\times}$ together with an isomorphism between the pullbacks under the pullbacks under the two maps

$$a_*: X_*(T) \times X_*(T) \to X_*(T) \qquad (\mathrm{pr}_2)_*: X_*(T) \times X_*(T) \to X_*(T)$$
$$(\alpha, \beta) \mapsto w(\alpha) + \beta - \alpha \qquad (\alpha, \beta) \mapsto \beta$$

This condition simplifies to $\rho(w(\alpha)) = \rho(\alpha)$ for all $\alpha \in X_*(T)$.

6 Miscellaneous

Lemma 6.1. Suppose G acts on a set X and H is a subgroup of G. Then the set of orbits of the diagonal action of G on $X \times G/H$ are in bijection with the orbits of H on X:

$$G \setminus (X \times G/H) = X/H.$$

Proof. The map $\phi : X \to X \times G/H$ by $\phi(x) = (x, H)$ induces an isomorphism $X/H \to G \setminus (X \times G/H)$. The inverse map can be described as $(x, gH) \mapsto [xg]$. Note that we can identify the left action of G on a set X with a right action via $x \cdot g = g^{-1} \cdot x$.

Lemma 6.2. There is a G-equivariant bijection

$$(G/N \times G/N)/T = G \times_B G/N.$$

Sketch of proof. The map $\phi: G \times G \to G \times_B G/N$ defined by $\phi(g,h) = [g,g^{-1}hN]$ induces the desired bijection. An inverse is induced by the map $\psi: G \times G/N \to (G/N \times G/N)/T$, where $\psi(x,yN) = (xN,xyN)T$. One verifies easily that (1) $\psi(gtn_1,gtn_2) = \psi(g,h)$ for any $t \in T$ and $n_1, n_2 \in N$, (2) $\phi(xb,b^{-1}ybN) = \phi(x,yN)$ for any $b \in B$, and (3) G-equivariance, that is, $\phi(\gamma \cdot (g,h)) = \gamma \cdot \phi(g,h)$ for any $\gamma \in G$.

References

[VM88] K. Vilonen and I. Mirkovic, Characteristic varieties of character sheaves., Inventiones mathematicae 93 (1988), no. 2, 405–418.