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This informal document collects some facts on quantum Hamiltonian reduction. The first section
establishes notation and gives reminders on coalgebras and Hopf algebras. In the second section,
the notion of a quantum moment map is used to perform a Hamiltonian reduction procedure. The
ground field is C.

1 Preliminaries on coalgebras, bialgebras, and Hopf algebras

Let A be an algebra with multiplication map m : A⊗A→ A. The associativity axiom implies that,
for any positive integer n, there is a single, unambiguous n-fold multiplication mapm(n) : A⊗n → A.
In other words, any way of associating a string of n elements of A gives rise to the same product.

Similarly, if (H,∆, ε) is a coalgebra, then the coassociativity axiom implies that, for any positive
integer n, there is a single, unambiguous n-fold comultiplication map ∆(n) : H → H⊗n. In (sumless)
Sweedler notation, the this map is written as

∆(n)(h) = h(1) ⊗ h(2) ⊗ · · · ⊗ h(n).

Recall that the symbol h(i) has no intrinsic meaning; it is part of an implicit sum and the values in
that sum depend on n. To facilitate clarity in subsequent proofs, we add expressions of the form
“(n = 4)” in lines involving Sweedler notation. The counit axiom implies that, for 1 ≤ i ≤ n + 1,
the following identity holds:

h(1) ⊗ · ⊗ ε(h(i))⊗ · · · ⊗ h(n+1) = h(1) ⊗ · · · ⊗ h(n), (1.1)

or, equivalently, (1⊗ · · · ⊗ ε⊗ · · · ⊗ 1) ◦∆(n+1) = ∆(n), where ε is in any of the n+ 1 slots.

Now suppose that H is a bialgebra. The comultiplication and counit give the abelian category
H-mod of modules for H the sturcture of a tensor category. Explicitly, if M and N are two H-
modules, the tensor product of vector spaces M ⊗ N has an action of H given by h(m ⊗ n) =
h(1)m ⊗ h(2)n. The unit 1 of H-mod is the one-dimensional vector space C is endowed with the
H-module structure via the counit map ε. The space of invariantsMH of an H-moduleM is defined
as

MH = HomH(1,M) = {m ∈M | h ·m = ε(h)m for all h ∈ H}.

Observe that functor of taking invariants (−)H : H-mod → VecC is equivalent to the functor
HomH(1,−) and hence is left exact.

Finally, suppose H is a Hopf algebra with antipode S. The adjoint action of H on itself is given
by

h / h′ = h(1)h
′S(h(2)).

This formula defines an action since the comultiplication map ∆ is an algebra homomorphism and
the anitpode S is an algebra antihomomorphism.

1



2 Quantum moment maps and Hamiltonian reduction

Definition 2.1. A quantum moment map is an algebra homomorphism µ : H → A from a Hopf
algebra H to an algebra A.

For example, one should think of H as the enveloping algebra U(g) or quantized enveloping
algebra Uq(g) of a Lie algebra, or as the Hopf algebra O(G) of functions on an algebraic group G.
A quantum moment map induces an adjoint action of H on A given by the the formula

h / a = µ(h(1)) · a · µ(S(h(2))),

where S is the antipode on H and the multiplication occurs in A. Since µ is an algebra homomor-
phism, it is immediate that µ is H-equivariant, where H acts on itself by the adjoint action.

Lemma 2.2. Endowed with the adjoint action, A is an algebra object in the tensor category H-mod.

Proof. We must show that the multiplication map m : A⊗ A→ A is a map of H-modules. Recall
that H acts on the tensor product A⊗A via the comultiplication map ∆. For any a⊗ b ∈ A⊗A,
we have

m(h / (a⊗ b)) = m((h(1) / a)⊗ (h(2) / b)) (n = 2)

= µ(h(1)) · a · µ(S(h(2))) · µ(h(3)) · b · µ(S(h(4))) (n = 4)

= µ(h(1)) · a · µ(S(h(2))h(3)) · b · µ(S(h(4))) (n = 4)

= µ(h(1)) · a · ε(h(2)) · b · µ(S(h(3))) (n = 3)

= µ(h(1)) · a · b · µ(S(h(2))) Equation (1.1), (n = 2)

= h / (ab) = h / m(a⊗ b),

Let H be a Hopf algebra and I ⊆ H a 2-sided ideal that is invariant under the adjoint action of
H. Let µ : H → A be a quantum moment map, and write A · µ(I) or simply A · I for the left ideal
of A generated by the image of I. The remainder of this section is devoted to an explanation of the
following definition:

Definition 2.3. The Hamiltonian reduction of A by µ at I is defined as the algebra

AI = (A/A · µ(I))H .

We first argue that the H-action on A descends to A/(A · µ(I)), and hence it makes sense to
consider the space of invariants. To see this, note that µ(I) is an H-submodule of A becasue I is
H-invariant and µ is a map of H-modules. Next, Lemma 2.2 shows that the mulitplication map
m : A⊗ A → A is H-linear, so the compposition A⊗ µ(I) → A⊗ A → A is a map of H-modules.
Therefore, the image of this composition is an H-submodule of A, and this image is precisely the
ideal A · µ(I). We conclude that the quotient A/A · µ(I) carries an H-action.

Next, we argue that the algebra structure on A descends to AI . We begin with a useful lemma:

Lemma 2.4. Suppose b ∈ A is such that [b] ∈ (A/A · µ(I))H . Then, for any x ∈ A · µ(I), the
product xb lies in the ideal A · µ(I).
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Proof. The condition [b] ∈ (A/A · µ(I))H implies that, for any h ∈ H, there is an x ∈ A · µ(I) such
that h / b = ε(h)b+ x. To prove the lemma, it suffices to show that µ(h)b ∈ A · µ(I) for any h ∈ I.
To this end, suppopse that h ∈ I. Then

µ(h)b = µ(h(1)ε(h(2))) · b = µ(h(1)) · b · ε(h(2))) (n = 2)

= µ(h(1)) · b · µ(S(h(2))h(3)) (n = 3)

= µ(h(1)) · b · µ(S(h(2)) · µ(h(3)) (n = 3)

= (h(1) / b) · µ(h(2)) (n = 2)

= (ε(h(1)) · b+ x) · µ(h(2)) b ∈ (A/A · µ(I))H , (n = 2)

= ε(h(1)) · b · µ(h(2)) + x′ (n = 2)

= b · µ(ε(h(1))h(2)) + x′ (n = 2)

= bµ(h) + x′

where x′ = xµ(h(2)) ∈ A. In fact, x′ ∈ A · µ(I) because x ∈ A · µ(I) and I is a 2-sided ideal of H.
Now, bµ(h) is in A · µ(I), and hence µ(h)b = bµ(h) + x′ belongs to A · µ(I).

Proposition 2.5. The multiplication on A descends to a well-defined associative algebra structure
on (A/A · µ(I))H .

Proof. Abbreviate A · µ(I) by A · I. Lemma 2.4 implies that there is an induced map

m : (A/A · I)× (A/A · I)H → A/A · I

that makes the following diagram commute:

A⊗A //

��

A

��

A⊗ (A/A · I) // A/A · I

A⊗ (A/A · I)H //
?�

OO

��

A/A · I

=

OO

(A/A · I)⊗ (A/A · I)H

66

,

where the top map is the multiplication on A, and the remaining maps are the obvious ones. It is
enough to prove that the restriction of the mapm to (A/A·I)H⊗(A/A·I)H lands in (A/A·I)H . To see
this, suppose a, b ∈ A are such that [a], [b] ∈ (A/A · I)H and let h ∈ H. Then h(1) /a = ε(h(1))a+xa
and h(2) / b = ε(h(2))b+ xb for some xa, xb in A · I, and

h / m(a, b) = h / [ab] = [h / (ab)] = [(h(1) / a) · (h(2) / b)] = [(ε(h(1))a+ xa)(ε(h(2))b+ xb)]

= [ε(h)ab+ ε(h(2))xab+ ε(h(2))axb + xaxb] = [ab],

where the last step uses Lemma 2.4.

Observe that there is an isomorphism R : A/A · I ∼→ HomA(A,A/A · I) sending [b] ∈ A/A · I to
the A-linear operator R[b] : [a] 7→ [ab] of right multiplication by b.
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Lemma 2.6. There is an injective algebra homomorphism (A/A · I)H → EndA(A/A · I)op making
the following diagram commute:

A/A · I R // HomA(A,A/A · I)

(A/A · I)H //
?�

OO

EndA(A/A · I)
?�

OO

Proof. First we show that if [b] ∈ (A/A · I)H , then the operator R[b] : A → A/A · I descends to
A/A · I. This follows from Lemma 2.4:

x ∈ A · I ⇒ xb ∈ A · I ⇒ R[b](x) = 0.

Thus we have an algebra map (A/A · I)H → EndA(A/A · I)op.

Example: Characters of H. Let η : H → C be an algebra homomorphism, i.e. a character of
H. The kernel I = ker(η) is the 2-sided ideal generated by all elements of the form h − η(h) for
h ∈ H. In this case, we write Aη for the Hamiltonian reductin Aker(η), and call it the Hamiltonian
reduction of A by µ at the character η.

Lemma 2.7. If I = ker(η) is the kernel of a character η of H, then the map (A/A · I)H →
EndA(A/A · I)op is an isomorphism of algebras.

Proof. Let b ∈ A and suppose that R[b] descends to A/A · I. We show that the image [b] of b in
A/A · I) lies in the space of invariants (A/A · I)H . By hypothesis, xb ∈ A · I for any x ∈ A · I. For
any h ∈ H, we have

[h / b] = [µ(h(1))bµ(S(h(2)))]

= [(µ(h(1))− η(h(1)))bµ(S(h(2))) + η(h(1))bµ(S(h(2))]

= [η(h(1))bµ(S(h(2))]

= [η(h(1))b(µ(S(h(2))− η(S(h(2)))) + η(h(1))bη(S(h(2)))]

= [η(h(1))bη(S(h(2)))]

= [ε(h)b].

Therefore [b] ∈ (A/A · I)H .

Observe that there is a map EndA(A/A · I)→ A/A · I sending f to f(1).

Question: Is the image of this map contained in (A/A · I)H?

If so, then there is an ismorphism EndA(A/A · I)op ' (A/A · I)H , as in [BFG, Section 3.4].
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