
NOTES ON THE SEQUENCE MAP FOR MONADS

IORDAN GANEV

Version 1.2

Contents

1. Introduction 1

2. The Kleisli category 3

3. The sequence map 4

4. Monads in Haskell 5

5. Examples 9

6. Exercises 14

References 16

Appendix A. An alternative characterization of monads 17

Appendix B. The generalized sequence map 17

1. Introduction

These notes give a formulation of the categorical semantics behind the sequence map
in Haskell. While our focus is on the mathematical foundations, we also have practical
goals of understanding how best to use the Monad type class. We assume familiarity
with the basics of category theory, and exposure to Haskell. Recommended resources
include [oH, Rie17, Mil19].

1.1. Monads in Haskell. Haskell is a strongly typed language, and contains various
ways to produce new types based on old types; these are known as type constructors.
Roughly speaking, a monad m is a type constructor with desirable properties with respect
to composition. The monad properties allow for a consistent and associative way to
”compose” a function of type a -> m b with one of type b -> m c to produce one of
type a -> m c:

(a -> m b) -> (b -> m c) -> a -> m c

In many cases, it is helpful to regard values of type m a as operations that can be
executed to produce a value of type a. So the composition rule can be interpreted giving
a consistent way to combine two executions into one. We discuss monads in Haskell in
more detail in Section 4. Examples include:

• The maybe type constructor Maybe a = Nothing | Just a.
• The list type constructor [a] = Nil | Cons a [a].

1

2 IORDAN GANEV

• The state type constructor State s a = State (s -> (a,s)), where s is
the state and a is the argument of the monad.

• The representable type constructor Repr e a = Repr (e -> a) wher e is
considered fixed and a is the argument of the monad.

1.2. Monads in category theory. In category theory, a monad on a category C is an endo-
functor T : C → C with properties that allow for a consistent and associative composition
rule:

C(X, TY)× C(Y, TZ) → C(X, TZ)
where we write C(−,−) for the set of morphisms from one object to another. This
composition rule is part of the definition of the Kleisli category associated to the monad
T, which we discuss further in Section 2. Moreover, the composition rule is equivalent
to requiring that T be a monoid in the category of endofunctors (with the operation of
composition), which is the usual method of introducing monads in category theory. In
Section 5, we discuss the following examples of monads on the category of sets:

(1) The maybe monad TX = 1 + X.
(2) The list monad TX = [X] = ∑n∈N Xn.
(3) The state monad TX = Hom(S, X × S) for a fixed set S.
(4) The free module monad TX = Homf(X, R) where R is a semiring (such as the

natural numbers N or the real numbers R), and the subscript ”f” denotes finitely
supported functions.

(5) The representable monad TX = Hom(E, X) for a fixed set E.

1.3. The sequence map. In Haskell, the sequence map has type [ma]->m[a] and can
be thought of as converting a list of monadic operations, each producing a value of
type a, to a single monadic operation that produces a list of values of type a, that is,
it produces a value of type [a]. We give a categorical formulation of this procedure
in Section 3, its implementation in Haskell in Section 4, and examples in Section 5. A
proposed generalization of the sequence map appears in Appendix B.

1.4. Notation. For a category C, we write C(X, Y) for the set of morphisms from the
object X to the object Y. We use T to denote a monad on category C, and write the mul-
tiplication and unit natural transformations as µ : T2 → T and ϵ : 1 → T, respectively.
These satisfy the associativity and unit axioms:

µX ◦ µTX = µX ◦ TµX µX ◦ ϵTX = idTX = µX ◦ TϵX

In the context of Haskell, we will denote a monad as m.

When working in the category of sets, we write X +Y for the coproduct (disjoint union)
of two sets X and Y, which are referred to as the cofactors of the coporduct. Given maps
f : X → Z and g : Y → Z, we write ⟨ f , g⟩ for the induced map X + Y → Z. We also
write ∑i∈I Xi for the coproduct of an indexed family of sets.

Our use of the symbol 1 is overloaded; its meaning will be clear from context to be
either the identity functor, the identity map, the one-point set, the single element of the
one-point set, or the number one.

NOTES ON THE SEQUENCE MAP FOR MONADS 3

2. The Kleisli category

Let T be a monad on a category C. The Kleisli category CT is defined as having the same
objects as C, with morphisms given by:

CT(X, Y) = C(X, TY)

The identity in CT(X, X) is given by the unit ϵX : X → TX, and the composition of
f1 : X → TY and f2 : Y → TZ is given by:

f2 ◦T f1 := µZ ◦ T f2 ◦ f1

= (X
f1−→ TY

T f2−→ T2Z
µZ−→ TZ)

The associativity of composition, as well as the identity properties, follow from (and are
in fact equivalent to) the associativity and unit axioms of the monad T. (See Exercise 3.)
There are functors:

C CT

FT

UT

defined as follows:

FTX = X UTX = TX

FT(X
f−→ Y) = X

f−→ Y
ϵY−→ TY UT(X

g−→ TY) = TX
Tg−→ T2Y

µY−→ TY

In other words, FT is the identity on objects and post-composes with the unit on mor-
phisms: FT f = ϵY ◦ f . Meanwhile, UT applies T to objects and, on morphisms, applies
T and then multiplies: UTg = µY ◦ Tg.

Lemma 2.1. We have:

(1) The functors above form an adjoint pair (FT, UT):

CT(FTX, Y) = CT(X, Y) = C(X, TY) = C(X, UTY).

(2) The monad of the adjunction is T = UT ◦ FT. In particular,

T f = UT(ϵY ◦ f), µX = UT(idTX), ϵX = FT(idX).

(3) The functor UT applied to morphisms defines a natural transformation

C(−, T−) → C(T−, T−)

of functors Cop × C → C.

(4) For any g = g1 : X → TY and g2 : Y → TZ, we have:

(UTg) ◦ ϵX = g UT(ϵX) = idTX UT(UT(g2) ◦ g1) = UT(g2) ◦ UT(g1)

Sketch of proof. The first claim follows from definitions. The second also follows from
definitions, together with the unit axiom to show that UT(ϵY ◦ f) = µY ◦ TϵY ◦ T f = T f .
The third claim is a consequence of the facts that (1) UT is a functor, (2) UT applies

4 IORDAN GANEV

T to objects, and (3) CT(X, Y) = C(X, TY). The identities of the final claim are easily
verified using (1) the definition that UTg = µY ◦ Tg, (2) the fact that µ and ϵ are natural
transformations, and (3) the unit axiom for T. □

Remark 2.2. There is a precise sense in which the Kleisli category, equipped with the
adjunction (FT, UT) is initial among all adjunctions giving rise to the monad T. The
category of T-algebras (also known as the Eilenberg–Moore category) is final.

3. The sequence map

In this section, we specialize to the category Set of sets, and write Hom(X, Y) = Set(X, Y)
for the set of morphisms from a set X to a set Y. Recall the product-hom adjunction:

Hom(X, Hom(Y, Z)) ≃ Hom(X × Y, Z) ≃ Hom(Y, Hom(X, Z))

for any sets X, Y, and Z.

3.1. The list endofunctor. Let [X] = List(X) = ∑∞
n=0 Xn be the set of all lists with entries

in the set X; this defines an endofunctor1 [−] : Set → Set, where a map f : X → Y is sent
to the map [x1, . . . , xn] 7→ [f (x1), . . . , f (xn)].

Given a list in [X] and element in X, we can form a new list by attaching the element to
the front of the list. This is traditionally known as the cons map:

consX : X × [X] → [X]; (x, [x1, . . . , xn]) 7→ [x, x1, . . . , xn]

The image of consX comprises all non-empty lists. Following Haskell notation, we ab-
breviate cons(x, x) by (x : x). Including the empty list via the map nilX : 1 → [X] gives
an isomorphism:

⟨nilX, consX⟩ : 1 + X × [X]
∼−→ [X]

where we apply nilX to the first cofactor and consX to the second.

3.2. The map T(2). Let T be a monad on Set, and define a natural transformation

T(2) : Hom(−×−,−) → Hom((T−)× (T−), T−)

of functors Setop × Setop × Set → Set as:

T(2) = T(2)
X,Y,Z : Hom(X × Y, Z) ∼−→ Hom(Y, Hom(X, Z))

T◦−−→ Hom(Y, Hom(TX, TZ))
∼−→ Hom(TX, Hom(Y, TZ))

UT◦−−→ Hom(TX, Hom(TY, TZ))
∼−→ Hom(TX × TY, TZ)

1In fact, List is a monad, but its monad structure is not relevant in this section.

NOTES ON THE SEQUENCE MAP FOR MONADS 5

The first, third, and fifth maps use the adjunction (×, Hom); the second applies the
functor T to morphisms; the fourth uses UT applied to SetT(Y, Z) = Hom(Y, TZ). More
explicitly, we have:

T(2)(f)(p, q) = UT(x 7→ T f (x,−)(q))(p).
for f : X × Y → Z and (p, q) ∈ TX × TY. Since T f (x,−) = UT(ϵZ ◦ f (x,−)), we can
equivalently write:

T(2)(f)(p, q) = UT(x 7→ UT(ϵZ ◦ f (x,−))(q))(p).

3.3. The sequence map. We now define the sequence natural transformation

seq : [T−] → T[−]

of endofunctors. Given a set X, we have the isomorphism

⟨nilTX, consTX⟩ : 1 + TX × [TX]
∼→ [TX],

and so it is enough to define seqX : [TX] → T[X] on the empty list and on a list of the
form (p : p) for p ∈ TX and p ∈ [TX]. We do this as follows:

seq : [TX] → T[X]

[] 7→ ϵ[X]([])

(p : p) 7→ T(2)
X,[X]

(cons)(p, seq(p))

where we note that T(2)
X,[X]

(cons) is a map TX × T[X] → T[X]. Equivalently, we have the
following commutative diagram:

1 + TX × [TX] 1 + TX × T[X]

[TX] T[X]

⟨ 1 , 1×seqX ⟩

⟨ nilTX , consTX ⟩ ⟨ ϵ[X]◦nilX , T(2)
X,[X]

(consX) ⟩
seqX

Remark 3.1. In appendix B, we propose a generalization of the sequence map to a natural
transformation E ◦ T → T ◦ E to a class of functors E beyond the list endofunctor.

4. Monads in Haskell

4.1. Type constructors and functors. Haskell is a strongly-typed language, which means
that every Haskell value and expression has a type. Haskell also features type construc-
tors that take a type and produce a new type. Examples include the Maybe constructor,
the List constructor2, and the binary tree constructor BTree:

data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
data BTree a = Empty | Node a (BTree a) (BTree a)

A type constructor may also take in multiple types to produce the new type, as in:
2The list type with entries of type a is usually denoted [a].

6 IORDAN GANEV

data Either a b = Left a | Right b
data ListEither a b = Nil | Cons1 a (ListEither a b) | Cons2 b (

ListEither a b)

In these notes, we focus on single-variable type constructors. A type constructor is a
Functor in Haskell if it is equipped with a way of producing a new function for every
function between the type variables. The minimal complete definition is:

class Functor f where
fmap :: (a -> b) -> f a -> f b

To connect with category theory, the relevant category is the category of Haskell types.
We cannot do justice to the deep theory behind this category; to avoid a rabbit hole of
technicalities, not much is lost if one thinks of the category of Haskell types as simply the
category of sets. A Functor in the sense of Haskell is an endofunctor of this category if
it satisfies the identity and composition axioms:

fmap id = id -- identity axiom
fmap (f . g) == fmap f . fmap g -- composition axiom

Functors defined in Haskell are expected to respect identities and composition, though
there is no way to enforce this in Haskell. Conversely, an endofunctor F on Set defines
a natural transformation Hom(−,−) → Hom(F−, F−) of functors Setop × Set → Set;
this corresponds to fmap. The Maybe, List, and BTree constructors are ”naturally”
functors.

4.2. Monads. A type constructor m is considered a Monad in Haskell if it is equipped
with (1) a way of extending any function a -> m b to a function m a -> m b, and (2)
a map from any type a to the output type m a. The minimal complete definition is:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

A monad in Haskell is expected to satisfy the following identities (which cannot actually
be enforced in Haskell):

-- x::a z::m a f::a -> m b g::b -> m c
return x >>= f = f x -- left identity
z >>= return = z -- right identity
z >>= (\x -> f x >>= h) = (z >>= f) >>= h -- associativity

Moreover, a Monad in Haskell is in particular a Functor:

liftM :: Monad m => (a -> b) -> (m a -> m b)
liftM f z = z >>= (return . f)

The identity and composition laws for the liftM follow from the identity and asso-
ciativity laws for the monad m. Table 1 gives a dictionary between constructions and
identities in Haskell and concepts in category theory.

NOTES ON THE SEQUENCE MAP FOR MONADS 7

Haskell Category Theory

Monad m Monad T : Set → Set

f::a->m b f : X → TY

z >>= f UT(f)(z)

return::a->m a ϵ : 1 → T

prod::m(ma)->ma, (p -> p >>= id) µX : T2X → TX

return x >>= f = f x (UT f) ◦ ϵX = f

z >>= return = z UT(ϵX) = idTX

z>>=(\x->f x>>=h) = (z>>=f)>>=h UT(UT(h) ◦ f) = UT(h) ◦ UT(f)

liftM f z = z >>= (return . f) T f = UT(ϵY ◦ f)

Figure 1. Dictionary between Haskell and category theory.

It is easy to see from Lemma 2.1 that a monad in the sense of category theory defines a
Monad in the sense of Haskell. In Appendix A, we give a proof of the converse: a Monad
in Haskell gives rise to a ordinary category theory monad as long as the identity and
associativity axioms hold.

We give an implementation of the composition rule mentioned in Section 1:

compose :: (a -> m b) -> (b -> m c) -> a -> m c
compose g1 g2 x = (g1 x) >>= g2

Remark 4.1. Haskell also has an operator (>>):ma->mb->mb for a monad m. This can
be recovered from (>>=) by using a constant function in the second factor:

z>>w = z>>= (\x -> w)

4.3. do blocks. Haskell features do blocks as a way to abbreviate compositions in the
Kleisli category and the functor UT. To illustrate the motivation, let z:ma and w:mb. We
will often want to perform computations like:

z >>= [\x -> w >>= [\y -> u x y]]

where z::ma, w::mb, and u is a function of type a->b->mc. Walking through this:
given x::a, we have the function b->mc taking y to u x y. This function feeds in as
the second input of the operator >>= with w::mb being the first input. The operator
returns an output of type mc. Recalling that x::a was fixed, we see that we obtain a
function a->mc. This function in turn feeds as the second input of the operator >>=
with z::ma being the first input. Hence, we the final output is of type mc.

Using do blocks, this simplifies to:

8 IORDAN GANEV

do
x <- z
y <- w
u x y

In general, a code block of the form

do
x <- z
...

is equivalent to:

z >>= [\x -> do ...]

Some notes:

• The final line of a do block must be an expression of type m a for some type a.
One can think of the type of the entire do block as having the type of the last line.

• A non-final line may be of the form v <- expr, where expr has type m a for
some type a. The variable v is a dummy variable of type a used to define a
function with input type a.

• Alternatively, a non-final line may be consist of just an expr of type m a for
some type a. This line can be replaced by v <- expr with no change in the
functionality of the code block. (This corresponds to defining a constant function
and can be avoided with the operator >>, see remark 4.1.)

• The remaining lines are let statements, which are less relevant for categorical
considerations.

Executing a do statement amounts to performing a composition of morphisms in the
Kleisli category. Conceptually (though not necessarily practically), one can think of
going from the last line to the first.

4.4. The sequence map in Haskell. The idea of the sequence function is to capture the
following function concept in (pseudo-)Haskell:

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence [x1,...,xn] = do x1 <- p1

x2 <- p2
...
xn <- pn
return [x1,x2,...,xn]

Obviously, the above doesn’t compile; an actual implementation of the sequence map is:

NOTES ON THE SEQUENCE MAP FOR MONADS 9

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (p:ps) = p >>= \x -> (sequence ps) >>= \ys -> return (x:ys)

4.5. The sequence map as a fold. To connect with Section 3, let us implement the map
T(2), as well as nil and cons:

T2 :: (a -> b -> c) -> m a -> m b -> m c
T2 f z u = z >>= (\x -> u >>= return . f x)

nil = [] :: [a]

cons :: a -> [a] -> [a]
cons x ys = x:ys

Taking b = c = [a], this leads us to implement the sequence function as a fold:

sequence :: Monad m => [m a] -> m [a]
sequence = foldr (T2 cons) (return nil)

There is a way in which nil can be regarded as T(0) (see Appendix B), so that the fold
becomes foldr (T2 cons) (T0 nil).

4.6. MapM. Haskell also has the function MapM, which can be defined as:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f = sequence . map f

We note in passing, that, for performance reasons, Haskell implements mapM directly
and then defines sequence = mapM id.

5. Examples

Here are examples of monads on the category of sets. For each, we comment on:

• the monad structure maps µ and ϵ,
• the Kleisli composition TX × Hom(X, TY) → TY taking (z, g) to UT(g)(z),
• the map T(2) : Hom(X × Y, Z) → Hom(TX × TY, TZ), and
• the sequence map seqX : [TX] → T[X].

5.1. The maybe monad. Consider the functor TX = 1 + X, which acts on morphisms
by extending a function f : X → Y to the function 1 + X → 1 + Y sending 1 to 1.
This defines a monad with ϵ : X → 1 + X including into the second cofactor, and
µ : T2X = 1 + 1 + X → 1 + X collapsing both factors of 1 into the single one. The Kleisli
composition map:

TX × Hom(X, TY) = (X + 1)× Hom(X, 1 + Y) → TY = 1 + Y

10 IORDAN GANEV

extends a function X → 1 + Y by sending 1 to 1. The map:

T(2) : Hom(X × Y, Z) → Hom(TX × TY, TZ) = Hom(1 + X + Y + X × Y, 1 + Z)

extends a function X ×Y → Z by sending the cofactors 1, X, and Y to 1. More generally,
to describe the sequence map, let [k1, . . . , kn] be a list with entries in 1 + X, so that each
ki is either equal to 1 or belongs to X. Then:

seq([k1, . . . , kn]) =

{
[x1, . . . , xn] ∈ [X] ⊆ 1 + [X] if ki = xi ∈ X for all i
1 ∈ 1 + [X] otherwise

In other words, if any of the ki’s is equal to one, then the output of the sequence map is
1, and otherwise the sequence map is the identity.

5.2. The list monad. The list functor TX = [X] = List(X) = ∑∞
n=0 Xn defines a monad

with ϵ : X → [X] including X as singleton lists, and µ : T2X → TX concatenating a list
of lists into a single list. The Kleisli composition:

[X]× Hom(X, [Y]) → [Y]

takes a list [x1, . . . , xn] and a function f : X → [Y] to the concatenation of the lists
f (x1), ..., f (xn). The map

T(2) : Hom(X × Y, Z) → Hom([X]× [Y], [Z])

takes f : X × Y → Z to the function taking the pair of lists (x, y) to the list consisting of
all f evaluated on all combinations of pairs of elements formed by taking one element
of x = [x1, . . . , xn] and one element of y = [y1, . . . , ym]:

[f (xi, yj) | i = 1, . . . , n; j = 1, . . . , m]

In particular, the length of the output list is the product of the lengths of the input lists.
More generally, the sequence map takes a list of lists [x1, . . . , xn] to the list of all lists of
length n whose i-th entry is an entry of xi.

seq([x1, . . . , xn]) = [[x1,i1 , x2,i2 , . . . , xn,in] | i1 = 1, . . . , len(xi), . . . , in = 1, . . . , len(xn)]

The number of such lists is the product of the lengths of the xi. If any of the input lists
is empty, then the output list is empty.

We remark that the maybe monad is in some sense a special case of the list monad as
there is an inclusion 1 + X ↪→ [X] as the lists of length at most one.

5.3. The state monad. Fix a set S, the ”state”. The functor

TX = Hom(S, X × S) ≃ Hom(S, X)× End(S)

can be thought of all ways to update the state (the End(S) factor) and producing a
”value” in the set X. It takes f : X → Y to the map that post-composes with f × 1.

This functor defines a monad with ϵ : X → Hom(S, X × S) taking x to the function
s 7→ (x, s) for all s. The product

µ : X → Hom(S, Hom(S, X × S)× S) → Hom(S, X × S)

NOTES ON THE SEQUENCE MAP FOR MONADS 11

is post-composition with the evaluation map Hom(S, X × S)× S → X × S. The Kleisli
composition:

Hom(S, X × S)× Hom(X, Hom(S, Y × S)) → Hom(S, Y × S)

is equivalent, via the (×, Hom) adjunction, to a map

Hom(S, X × S)× Hom(X × S, Y × S) → Hom(S, Y × S)

and is given by composition. The map

T(2) : Hom(X × Y, Z) → Hom(Hom(S, X × S)× Hom(S, Y × S), Hom(S, Z × S))

takes f : X × Y → Z to the function mapping the pair (ϕ : S → X × S , ψ : S → Y × S)
to the composition:

S
ϕ−→ X × S

1×ψ−→ X × Y × S
f×1−→ Z × S

The sequence map seqX : [Hom(S, X × S)] → Hom(S, [X]× S) takes a list of functions
[ϕ1, . . . , ϕn] to the function

s 7→ ([x1, . . . , xn], sn)

where the xi ∈ X and si ∈ S are defined recursively via:

s0 = s, and (xi, si) = ϕi(si−1) for i = 1, . . . , n.

In other words, the xi are the values produced while successively updating the state, and
sn is the final state. Equivalently, seqX([]) = [s 7→ ([], s)] and seqX(ϕ : ϕ) = [s 7→ (x : x, r)]
where seqX(ϕ)(s) = (x, t) and ϕ(t) = (x, r).

5.4. The free semigroup module monad. Recall that a semiring is defined in the same
way as a ring, except without the assumption of additive inverses. Let R be a semiring
and consider the functor

TX = Homf(X, R),

where Homf denotes the set of functions with finite support. This is a covariant functor
via pushforward of functions:

T(X
f−→ Y) : Homf(X, R) → Homf(Y, R), ϕ 7→ f∗ϕ =

y 7→ ∑
x∈ f−1(y)

ϕ(x)


Relevant instances of this functor are:

• The natural numbers N. In this case, TX = Bag(X) is the Bag endofunctor. A
bag of elements of X can also be thought of a multi-set; every element has some
multiplicity. There is a forgetful natural transformation of monads List → Bag.

• The real numbers R (or any field). In this case, TX is the vector space with basis
given by the elements of X.

• The Boolean set {0, 1} with OR as addition and AND as multiplication. In this
case, TX = Pf(X) is the set of finite subsets of X.

12 IORDAN GANEV

Observe that TX is the free R-module on the set X, and T f is a linear map for any
f : X → Y. If X is finite, then TX ≃ R|X| is itself a semiring with coordinate-wise
operations. If X is not finite, then TX is a semiring without multiplicative unit.

We now discuss the monad structure. The unit ϵX : X → Hom f (X, R) picks out the
delta functions, so that ϵX(x)(x′) = 1 if x = x′ and zero otherwise. In other symbols,
ϵX(x) = δx. The monad product is given by:

µX : Homf(Homf(X, R), R) → Homf(X, R)

Φ 7→

x 7→ ∑
ϕ∈Homf(X,R)

Φ(ϕ)ϕ(x)


The sum is well-defined due to the finite support condition. The Kleisli composition is
given by:

Homf(X, R)× Hom(X, Homf(Y, R)) → Homf(Y, R)

(ϕ, f) 7→
[

y 7→ ∑
x∈X

ϕ(x) f (x)(y)

]
Note that (δx, f) is sent to f (x). The Kleisli composition can be thought of as a convolu-
tion; let π1 : X × Y → X and π2 : X × Y → Y be the projection maps. Then (ϕ, f) goes
to (π2)∗(π∗

1 · f), where π∗
1 is the pullback, (π2)∗ is the pushforward, we regard f as a

function X × Y → R, and · denotes point-wise multiplication.

Moving on, we have:

T(2) : Hom(X × Y, Z) → Hom(Homf(X, R)× Homf(Y, R), Homf(Z, R))

f 7→

(ϕ, ψ) 7→

z 7→ ∑
(x,y)∈ f−1(z)

ϕ(x)ψ(y)


Another interpretation: (ϕ, ψ) defines a function ϕ × ψ : X × Y → R × R, which we can
post-compose with the multiplication map multR : R × R. Then T(2) f sends (ϕ, ψ) to the
pushforward f∗(multR ◦ (ϕ × ψ)). We make two final remarks about T(2) f : (1) it is not
linear, but bilinear, (2) it sends (δx, δy) to δ f (x,y).

Finally, we the sequence map is given by:

seqX : [Hom(X, R)] → Hom([X], R)

[ϕ1, . . . , ϕn] 7→
[

x 7→
{

∏n
i=1 ϕi(xi) if len(x) = n

0 otherwise

]
In particular, the sequence map factors through a map Hom(X, R)n → Hom(Xn, R),
and sends a list of delta functions to the delta function on the corresponding list:
[δx1 , . . . , δxn] 7→ δ[x1,...,xn]. For n = 0, we have that seqX([]) = δ[] is the delta function
at the empty set. We revisit the relevant instances of this functor:

NOTES ON THE SEQUENCE MAP FOR MONADS 13

• For R = N, the sequence map corresponds to the well-known natural transfor-
mation List ◦ Bag → Bag ◦ List. Given a list of n bags, the multiplicity of a list in
the output bag of lists is the number of ways the list can be realized via taking
the first element from the first bag, the second from the second bag, etc. So only
lists of length n can have non-zero multiplicity.

• If R is a field, then the sequence map restricts to the natural map from the direct
sum of n copies of a vector space to the tensor product of n copies of the same
vector space: V⊕n → V⊗n taking (v1, . . . , vn) to v1 ⊗ · · · ⊗ vn.

• Finally, for the finite power set monad, the sequence map takes a list of subsets
[S1, . . . , Sn] of X to the subset of [X] consisting of all lists [x1, . . . , xn] where xi
belongs to Si.

Remark 5.1. The power set monad TX = P(X) under direct images does not exactly fit
into the set of examples discussed in this section since X may be infinite. However, the
same formulas still hold. In particular, the sequence map is defined in exactly the same
way as the sequence map for the finite power set monad.

5.5. The representable monad. Let E be a set. Consider the functor TX = Hom(E,−).
This is a monad where ϵX : X → Hom(E, X) embeds as the constant functions, and µX
uses pullback along the diagonal ∆ : E → E × E:

T2X = Hom(E, Hom(E, X)) ≃ Hom(E × E, X)
∆∗
−→ Hom(E, X) = TX.

To describe the Kleisli composition, we make use of the (×, Hom) adjunction:

TX × Hom(X, TY) = Hom(E, X)× Hom(X, Hom(E, Y))

≃ Hom(E, X)× Hom(E, Hom(X, Y))

≃ Hom(E, X × Hom(X, Y))

→ Hom(E, Y)

where the third line uses the fact that a morphism into a product is the same as a pair
of morphisms into each factor, and the last map is post-composition with the evaluation
map X × Hom(X, Y) → Y. The map T(2) can be described as:

T(2) : Hom(X × Y, Z) → Hom(Hom(E, X)× Hom(E, Y), Hom(E, Z))

f 7→ [(ϕ, ψ) 7→ f ◦ ∆∗(ϕ × ψ)]

So that T(2) f (ϕ, ψ) sends e to f (ϕ(e), ψ(e)). The sequence map falls out of properties of
how product and coproducts interact with Hom sets:

seqX : [Hom(E, X)] =
∞

∑
n=0

Hom(E, X)n =
∞

∑
n=0

Hom(E, Xn)

→ Hom(E,
∞

∑
n=0

Xn) = Hom(E, [X])

14 IORDAN GANEV

More explicitly:
seqX([ϕ1, . . . , ϕn])(e) = [ϕ1(e), . . . , ϕn(e)] ∈ [X]

where each ϕi is a morphism E → X.

6. Exercises

(1) Let F : C → D be a functor. Show that the application of F to morphisms defines a
natural transformation Hom(−,−) → Hom(F−, F−) of functors Cop × C → Set.

(2) Let F : C → D be a functor, and suppose both C and D have products and a
terminal object.
(a) Define a natural transformation:

cart : F × (−×−) → (−×F(1) −) ◦ (F × F)

of functors C × C → D. (Hint: use the projection maps π1 : X × Y → X and
π2 : X × Y → Y.)

(b) For a monad T, argue that cartX,Y ◦ ϵX×Y = ϵX × ϵY as morphisms from X ×Y
to TX × TY.

(c) The functor F is said to be Cartesian if cart is a natural isomorphism. Argue
that the list endofunctor is Cartesian, but the bag endofunctor is not.

(3) Show that requiring the associativity axiom for a monad T is equivalent to requir-
ing the multiplication in the Kleisli category to be associative. Similarly, show
that the unit axiom for a monad T is equivalent to the identity properties of
ϵX ∈ CT(X, X) in the Kleisli category.

(4) Given a monad T, recursively define µ(n) : Tn+1X → TX as:

µ(0) = idTX

µ(n) = µ(n−1) ◦ µTn−1X for n ≥ 1

Show that µ(n) = µ(n−1) ◦ TµTn−2X for n ≥ 2.

(5) Let R be a semiring and let T = Homfin(−, R). Define a map:

m(n) : X × TX × T2X × · · · × TnX → R

(ϕ0, ϕ1, . . . , ϕn) 7→
n

∏
i=1

ϕi(ϕi−1)

Recall the map µ(n) : Tn+1X → TX. Show that:

µ(n)(Θ)(x) = ∑
ϕ⃗

m(n+1)(Θ, ϕ⃗, x)

where the sum is over all ϕ⃗ = (ϕ1, . . . , ϕn) ∈ TX × · · · × TnX and (Θ, ϕ⃗, x) =
(Θ, ϕ1, . . . , ϕn, x).

NOTES ON THE SEQUENCE MAP FOR MONADS 15

(6) Show that the nilX and consX fit into a natural isomorphism ⟨nil, cons⟩ : P + id ×
List

∼−→ List, where P : Set → Set is the functor sending each set to the one-point
set 1 (the final object in Set), and id is the identity functor.

(7) Let T be a monad. For f ∈ Hom(X × Y, Z) prove the following equality of
functions X × Y → TZ:

T(2) f ◦ (ϵX × ϵY) = ϵZ ◦ f

(8) Let T be a monad. Recall the Cartesian map from Exercise 2; we compose it with
the obvious inclusion:

T(X × Y)
cartX,Y−→ TX ×T1 TY

inc
↪→ TX × TY

Applying T(2)
X,Y and pulling back along this composition, we obtain:

Hom(X × Y, Z)
T(2)

X,Y−→ Hom(TX × TY, TZ)
(inc◦cartX,Y)

∗
−→ Hom(T(X × Y), TZ)

Prove that, in general, this composition is NOT just the functor T applied to
morphisms. For example, take T to be list monad.

(9) Let T be a monad, and let p ∈ TX for some set X. Show that seq([p]) = T[x →
[x]](p). In other words, we apply T to the morphism X → [X] that takes each
element to the singleton list, and evaluate at p ∈ TX. Furthermore, show that
seq([ϵXx]) = ϵ[X][x].

(10) Let M be a monoid. Argue that X 7→ X × M is a monad. Compute the Kleisli
composition and sequence maps.

(11) Implement the sequence function using the identity

T(2)(f)(p, q) = UT(x 7→ T f (x,−)(q))(p).

(12) Let F be an endofunctor on the category of sets.
(a) Define a natural transformation

Hom(X × Y, Z) −→ Hom(FX × FY, F2Z)

of functors Setop × Setop × Set → Set. In fact there are two canonical choices;
select the one that ”processes” the left factor first, so that the first step in the
composition is the isomorphism Hom(X × Y, Z) ∼−→ Hom(Y, Hom(X, Z)).

(b) Generalize by induction to a natural transformation

Hom (X1 × · · · × Xn, Z) → Hom (FX1 × · · · × FXn, FnZ)

of functors (Setop)n × Set → Set. (Again, there are choices, but proceed left
to right.)

16 IORDAN GANEV

(c) In particular, considering the diagonal in (Setop)n, we have a natural trans-
formation

Hom (Xn, Z) → Hom ((FX)n, FnZ)
of functors Setop × Set → Set.

(d) Now suppose F = T is a monad. Using part (c) and µ : T2 → T define a
natural transformation:

T(n)
X,Z : Hom(Xn, Z) → Hom((TX)n, TZ)

with T(0)
Z : Z → TZ being the unit, T(1)

X,Z : Hom(X, Z) → Hom(TX, TZ) being
the functor T applied to morphisms, and T(2) coinciding with the definition
in Section 3.

(e) Use the T(n) to define a natural transformation:

T(∗) : Hom([X], Z) → Hom([TX], TZ)

Taking Z = [X], argue that id[X] is mapped to the sequence map seqX.

(f) Implement T(∗) as a function in Haskell via:

star :: Monad m => ([a]-> b) -> [m a] -> m b
star f [] = return (f [])
star f (p:ps) = p >>= \x -> star (\ys -> f (x:ys)) ps

Argue that the function star f is equal to liftM f . sequence. In par-
ticular, star id is equal to sequence.

References

[Mil19] Bartosz Milewski, Category Theory for Programmers by Bartosz Milewski | Blurb Books, 2019.
[oH] University of Helsinki, Haskell MOOC. Accessed: 2025-08-13.

[Rie17] Emily Riehl, Category Theory in Context, Courier Dover Publications, 2017.

NOTES ON THE SEQUENCE MAP FOR MONADS 17

Appendix A. An alternative characterization of monads

Consider the following data:

• An endofunctor T : Set → Set.
• A natural transformation ϵ : 1 → T of endofunctors of Set.
• A natural transformation p : Hom(−, T−) → Hom(T−, T−) of functors Setop ×
Set → Set.

For any X, set µX = pTX,X(idTX) : T2X → TX. It is easy to see that µ : T2 → T is a
natural transformation.

Proposition A.1. The data (T, ϵ, µ) is a monad if and only if the following identities hold:

pXY(g) ◦ ϵX = g pXX(ϵX) = idTX pYZ(g2) ◦ pXY(g1) = pXZ(pYZ(g2) ◦ g1)

where g = g1 : X → TY and g2 : Y → TZ.

Sketch of proof. The forward implication follows from Lemma 2.1 above, setting p to be
the natural transformation on morphisms induced by UT. For the opposite implication,
one must show that the associativity and unit axioms hold. The easiest is the left unit
axiom, which follows immediately from definitions and hypotheses:

µX ◦ ϵTX = pTX,X(idTX) ◦ ϵTX = idTX

The verification of the right unit axiom is:

µX ◦ TϵX = pTX,X(idTX) ◦ TϵX = pX,X(idTX ◦ ϵX)

= pX,X(ϵX) = idTX

where the first equality follows from definitions, the second from the fact that p is a
natural transformation, and the fourth from the hypotheses. Finally, for associativity:

µX ◦ TµX = pTX,X(idTX) ◦ TµX = pT2X,X(idTX ◦ µX) = pT2X,X(µX)

= pT2X,X(µX ◦ idT2X) = µX ◦ pT2X,TX(idT2X) = µX ◦ µTX

where we have twice used the fact that p is a natural transformation. □

Appendix B. The generalized sequence map

B.1. Introduction. In this appendix, we give a sketch of a generalization of the sequence
map beyond the List inductive type. We assume familiarity with F-algebras and initial
algebras.

To warm-up, recall that List(X) is the initial algebra of the endofunctor FX : S 7→ 1+ X ×
S. Another example to consider is that of binary trees. The set BTree(X) of binary trees
with nodes labeled by X is the initial algebra of the endofunctor FX : S 7→ 1 + X × S2. In
both cases, we have the assignment X → FX constittutes a functor Set → End(Set).

18 IORDAN GANEV

B.2. Statement. Now fix a non-negative integer d ≥ 1 and consider a functor:

Setd → End(Set), X = (X1, . . . , Xn) 7→ FX

that takes a tuple of sets to an endofunctor of Set. We make the following assumptions:

Assumption 1: The endofunctor FX has an initial algebra for every X; denote
it as η(F; X1, . . . , Xd). This gives a functor η(F;−) : Setd → Set.

Assumption 2: For each X and S, the set FX(S) is a coproduct of terms
of the form Sm0 × Xm1

1 × · · · × Xmd
d for some mi ∈ N.

Then we can define a generalized sequence natural transformation:

seq : η(F;−) ◦ Td → Tη(F;−)

of functors Setd → Set.

B.3. Steps in construction. Here is a sketch of the steps in defining this natural trans-
formation:

• First, observe that the T(2) construction generalizes to natural maps:

T(n) = T(n)
X1,...,Xn,Z : Hom(X1 × · · · × Xn, Z) → Hom(TX1 × · · · × TXn, TZ)

where T(0) = ϵZ and T(1) : Hom(X, Z) → Hom(TX, TZ) is simply the endofunc-
tor T applied to morphisms3. See Exercise 12.

• Recall Assumption 1. Make the following abbreviations of the initial algebras:

η(X) := η(F; X1, . . . , Xn) η(TX) := η(F; TX1, . . . , TXn).

Initial algebras are fixed points, so we have isomorphisms

cX : FX(η(X))
∼−→ η(X) cTX : FTX(η(TX)) ∼−→ η(TX)

• Recall Assumption 2. Let

c′X : η(F; X)m0 × Xm1 × · · · × Xmd → η(F; X)

be the restriction of cX to a cofactor. We have:

T(m)(c′X) : Tη(F; X)m0 × (TX)m1 × · · · × (TX)md → Tη(F; X)

where m = ∑d
i=0 mi.

• Observe that the domain of each T(m)(c′X) is a cofactor of FTX(Tη(X)). Hence,
proceeding cofactor by cofactor, we obtain a map:

T(∗)(cX) : FTX(Tη(X)) → Tη(X)

3Referring to Diagram 3.3, we have that ϵ[X] ◦ nilX = T(0)
[X]

(nilX).

NOTES ON THE SEQUENCE MAP FOR MONADS 19

This is precisely an FTX-algebra structure on Tη(X). The initiality of η(TX) now
provides a map (referred to as a catamorphism):

η(TX) → Tη(X)

which is what we take as the generalized sequence map.

Thus, we have a commutative diagram:

FTX(η(TX)) FTX(Tη(X))

η(TX) Tη(X)

FTX(seqX)

cTX T(∗)(cX)

seqX

where T(∗)(cX) : FTX(Tη(X)) → Tη(X) is our notation for the map obtained by applying
the various T(m) on the restriction of cX to the cofactors of FTX(Tη(X)).

	1. Introduction
	2. The Kleisli category
	3. The sequence map
	4. Monads in Haskell
	5. Examples
	6. Exercises
	References
	Appendix A. An alternative characterization of monads
	Appendix B. The generalized sequence map

