NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL

IORDAN GANEV
Version 2.1
CONTENTS
1. Introduction 1
2. Preliminaries 3
3. Lax monoidal functors 4
4. Monads 7
5. Haskell 10
6. Examples 15
7. Exercises 23
References 25
Appendix A. Characterization of monads 26
Appendix B. Generalized sequence map 26
Appendix C. Epsilon 28

1. INTRODUCTION

These notes are an exploration of lax monoidal functors and monads in category theory
as they relate to applicatives and monads in Haskell. Of particular interest are the
categorical semantics behind the sequence map in Haskell. While our focus is on
mathematical foundations, we also have practical goals of understanding how best to
use the Monad and Applicative type classes. We assume familiarity with the basics of
category theory, and exposure to Haskell. Recommended resources include [0}, ,

1.1. Monads in Haskell. Haskell is a strongly typed language, and contains various
ways to produce new types based on old types; these are known as type constructors.
Roughly speaking, a monad mis a type constructor with desirable properties with respect
to composition. The monad properties allow for a consistent and associative way to
“compose” a function of type @ -> m b with one of type b -> m ¢ to produce one of
typea -> m C:

(@ ->mb) ->(b->mc) ->a ->mc

Monads also include a unit function @ -> m a. In many cases, it is helpful to regard

values of type m a as operations that can be executed to produce a value of type a. So the
1

2 IORDAN GANEV

composition rule can be interpreted giving a consistent way to combine two executions
into one. We discuss monads in Haskell in more detail in Section 5. Examples include:

e The maybe type constructor Maybe a = Nothing | Just a.

e The list type constructor [a] = Nil | Cons a [a].

e The state type constructor State s a = State (s -> (a,s)), where s is
the state and a is the argument of the monad.

e The representable type constructor Repr e a = Repr (e -> a) wher e is
considered fixed and a is the argument of the monad.

A weaker version of monads are applicatives; and applicative f is a type constructor, to-
gether with a unit functiona -> f a, and either of the following equivalent operations:

<*>:: f (a->b) ->fa->fhb
1liftA2 :: (a ->b ->¢c) ->fa->fb ->fc
>f< :: fa->fb->f (a, b)

The first provides a way of “distributing” the functor into the domain and codomain of
a function; the second lifts a map on a product to a map where the functor is applied
to each factor as well as to the codomain; the third “factors out” the functor from a
product. Every applicative is a monad, while examples of applicatives that are not
monads include:

e The validation applicative Val a = Ok a | Error s for a monoid s (for ex-
ample, the list monoid s=[b]).

e The ziplist type constructor which differs from ordinary lists in that (1) infinite
lists are allowed and (2) the unit picks out constant infinite lists.

We discuss these and other examples in detail in Sections 5 and 6.

1.2. Monads in category theory. In category theory, a monad on a category C is an endo-
functor T : C — C with properties that allow for a consistent and associative composition
rule:
C(X,TY)xC(Y,TZ) - C(X,TZ)

where we write C(—, —) for the set of morphisms from one object to another. This
composition rule is part of the definition of the Kleisli category associated to the monad
T, which we discuss further in Section 4. Moreover, the composition rule is equivalent
to requiring that T be a monoid in the category of endofunctors (with the operation of
composition), which is the usual method of introducing monads in category theory. In
Section 6, we discuss the following examples of monads on the category of sets:

(1) The maybe monad TX =1+ X.

(2) The list monad TX = [X] = ¥ ,en X"

(3) The state monad TX = Hom(S, X x S) for a fixed set S.

(4) The free module monad TX = Hom¢(X, R) where R is a semiring (such as the
natural numbers IN or the real numbers IR), and the subscript "f” denotes finitely
supported functions.

(5) The representable monad TX = Hom(E, X) for a fixed set E.

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 3

Meanwhile, an applicative in Haskell is parallel to a lax monoidal functor on the cate-
gory of sets, which refers to an endofunctor A on the category of sets with a natural
transformation

AX X AY - A(X XY)

that allows us to “factor out” the functor from products. We define lax monoidal functors
precisely in Section 3 and show that every monad is a lax monoidal functor in Section 4.
The converse is false, as illustrated by examples in Section 6.

2. PRELIMINARIES

2.1. Notation. For a category C, we write C(X,Y) for the set of morphisms from the
object X to the object Y. Mostly, we work with the category Set of sets; we write
Hom(X,Y) = Set(X,Y) for the set of morphisms from a set X to a set Y. Recall the
product-Hom adjunction:

Hom(X,Hom(Y,Z)) ~ Hom(X x Y, Z) ~ Hom(Y,Hom(X, Z))

for any sets X, Y, and Z. Additionally, we write X + Y for the coproduct (disjoint union)
of two sets X and Y, which are referred to as the cofactors of the coporduct. Given maps
f:X —Zand g:Y — Z, we write (f,g) for the induced map X +Y — Z. We also
write) ;; X; for the coproduct of an indexed family of sets.

Our use of the symbol ‘1" is overloaded; its meaning will be clear from context to be
either the identity functor, the identity map, the one-point set, the single element of the
one-point set, the unit of a semiring, or the number one.

2.2. Endofunctors. For any endofunctor F of Set, there is a map
(2.1) Hom(X x Y,Z) — Hom(FX x FY, F2Z)

natural in X, Y, and Z, given as follows:

Hom(X x Y,Z) — Hom(X,Hom(Y, Z)) Fos Hom (X, Hom(FY,FZ))
—~ Hom(X x FY,FZ)
— Hom(FY,Hom(X, FZ)) L Hom(FY,Hom(FX, F?Z))
s Hom(FX x FY,F?Z)

The first, third, fourth, and sixth maps use the product-Hom adjunction. The second
and fifth are post-compositions with the map on morphisms provided by the functor F.
As a formula, f : X X Y — Z is sent to the function

X x FY — F?Z
(%,9) = Flx = Fly = f(x,y)](#)](%)

As a special case, we have a distinguished morphism FX x FY — F?(X x Y) arising as
the image of the identity morphism on X x Y.

4 IORDAN GANEV

Example 2.1. Let E be a fixed set, and consider the representable endofunctor Hom(E, —)
on the category Set. The map in Equation 2.1 takes f : X x Y — Z to the map

Hom(E, X) x Hom(E,Y) — Hom(E, Hom(E, Z))
(@) = [e [fg(e), p(e))]]

2.3. The list endofunctor. Let [X] = List(X) = Y_;~; X" be the set of all (finite) lists with
entries in the set X; this defines an endofunctor [—] : Set — Set, where amap f: X — Y
is sent to the map [x1,...,x,] — [f(x1),..., f(xn)]. Given a list in [X] and an element

in X, we can form a new list by attaching the element to the front of the list. This is
traditionally known as the cons map:

consy : X x [X] = [X]; (x, [x1, .-, xn]) =[x, %1, .., Xn)

The image of consxy comprises all non-empty lists. Including the empty list via the map
nilx : 1 — [X] gives an isomorphism:

(nily, consy) : 1+ X x [X] — [X]
where we apply nilx to the first cofactor and consx to the second.

Example 2.2. The map of Equation 2.1 specialized to the list endofunctor F = [—] takes
f:X XY — Ztothe map [X] x [Y] — [[Z]] defined as:

(xy) = [[f(x1,y1), f(x1,y2), -+, f(x1,Ym)]
[f (x2, 1), f(x2,Y2), -+ -, f (X2, Ym)]

U (ny1), f(x3,92), -, f (xn, Yim)]

where x = [x1,x2,..., X, and y = [y1,Y2,...,Ym]. In particular, the output is a list of
n = len(x) lists, each of length m = len(y). If x = [], then the output is the empty list,
while if y = [], then the output is a list of n = len(x) empty lists.

3. LAX MONOIDAL FUNCTORS
Unless specified otherwise, all endofunctors are of the category Set of sets.

3.1. Definitions. We begin directly with the definition of a lax monoidal endofunctor.

Definition 3.1. A lax monoidal endofunctor is an endofunctor A : Set — Set together
with a morphism ¥ : 1 — A1, where 1 is the one-point set, and a natural transformation

axy: AX x AY — A(X xY)
that satisfy the commutative diagrams:

ay yxid

AX x AY x AZ AXxY)x AZ

idx Déy,zl lﬂéx xY,Z

AX X A(Y x Z) — 2% A(X XY % Z)

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 5

1x AX —=— AX AX X1 — AX
wxidl TN lidxzp NT

These are known as the associativity, left unit, and right unit axioms, respectively.

Remark 3.2. A functor is monoidal if « is a natural isomorphism and ¥ is an isomor-
phism; one can regard lax monoidal is a weak version of monoidal. Lax monoidal
functors are monoids in the category of endofunctor of Set with the Day convolution,
see [] for more details. Lax monoidal functors are the category-theoretic version of
applicatives in Haskell, hence our choice of the symbol A.

Example 3.3. The representable endofunctor Hom(E, —) is lax monoidal, and in fact
monoidal. The unit map 1 — Hom(E,1) is an isomorphism as there is a single map
E — 1. The natural transformation « takes a pair of maps ¢ : E - Xand ¢ : E = Y
to the map E — X x Y defined as e — (¢(e),(e)); this is also an isomorphism. The
axioms are easily verified.

We postpone a detailed discussion of further examples to Section 6.

3.2. The sequence map. One upshot of lax monoidal functors is the existence of the
so-called “sequence map”, which is a commutation relation between any lax monoidal
endofunctor and the list endofunctor. The definition uses the nil and cons maps from
Section 2.3.

Definition 3.4. Let (A, ¢, «) be a lax monoidal functor. Define a natural transformation
(natural in X):

seqy : [AX] = A[X]
nilax (1) — A(nilx) o ¢(1)
consax(p, p) — A(consx) o ax x(p,seqx(p))

The definition uses the fact that (nil 4x, conssx) defines an isomorphism 1+ AX x [AX] —
[AX]. We have the following commutative diagram:

1+ AX x [AX] { ilax - consax) . [AX]

<1,1><seqx>l lSGQX

14+ AX x A[X] 50 41 4 A(x x [x]) LARI) Aleonsx))y

Example 3.5. Continuing the example of the representable lax monoidal functor Hom(E, —),
we have that the sequence map is given by evaluating each function in a list:

seqy : [Hom(E, X)] — Hom(E, [X])
@1+, Pul = [e = [Pa(e), ., Pule)]]

In this case, the sequence map is injective, and its image consists of all maps ® : E — [X]
such that the composition leno & : E — IN is constant.

6 IORDAN GANEV

Remark 3.6. In appendix B, we propose a generalization of the sequence map to a natural
transformation Fo A — A o F to a class of functors F beyond the list endofunctor.

3.3. Alternative formulation. We give an alternative formulation of the sequence map.
For n € IN, define natural transformations

oV (AX)" 5 A(XY)

(natural in X) recursively as follows. For n = 0, we set ocg?) =1 : 1 — Al, while for

n > 1, we set ocg?) to be the following composition:

1 (n—1) "
o = (AX — AX x (AX)" VIR AX < A ST AKX x XY = A(X”))

(1) _

In particular, ay,” = ax. The sequence map seqy is then equal to the composition:

T aly) (A(incy)|neN)

[AX] = Xhlo(AX)" > Lo A(X") » AlX]

where the first map applies ocg?) to the n-th cofactor, while the second applies A(inc,) :

A(X"™) — A[X] to the n-th cofactor, with inc,, : X" — [X] denoting the obvious inclusion.
In other words, given a list p € (AX)" of length n with entries in AX, we first compute

ocgg)(p) € A(X™), and then feed that into A(inc,) : A(X") — A[X].
3.4. Epsilon, Beta, and Gamma. Let (A, ¢, «) be a lax monoidal functor. Define a natural
transformation:
ex: X — AX, x — A[l— x]oy(1)
(natural in X). Alternatively, ex is defined via the composition:
X ~ Hom(1, X) —5+ Hom(F1, FX) %~ Hom(1, FX) ~ FX

In appendix C, we prove that € and the sequence map are related as follows:

X

[ex] €[x]
AX] / e \ A[X]

[

It is easy to verify that A(nilx) o ¢ = €[x) o nilx, so that seqx takes the empty list in [AX]
to the unit €[] applied to the empty list in [X], that is, seqx ([]) = ex)([])

Next, define a natural transformation:
Bxyz:Hom(X x Y,Z) — Hom(AX x AY, AZ)
fr= Afoaxy

(natural in X, Y, Z). The natural transformation « in the definition of an applicative can
be recovered from the natural transformation g by taking Z = X x Y and f = idxxy.
Thus, a lax monoidal functor can be defined in terms of the natural transformation §,

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 7

with the axioms adapted appropriately. Moreover, there is another natural transforma-
tion the can be used to characterize a lax monoidal functor instead of «, namely:

vx,y : AHom(X,Y) — Hom(AX, AY)
f e |2 Alev) o stom(x) x(F %)

In other words, vx y can be defined via the hom-product adjunction and the following
composition:

A(Hom(X,Y) x X) XY ay

XHom(X,Y),X
—

AHom(X,Y) x AX
The natural transformation ax y is the image of the identity morphism under:

Hom(X x Y, X x Y) - Hom(X, Hom(Y, X x Y)) - Hom(AX, AHom(Y, X x Y))

VY, XxYO—
S

Hom(AX,Hom(AY,A(X xY)))
— Hom(AX x AY,A(X xY))

As a formula, we have:
axy(X,7) = (vv,xxy o An(%))(¥)
where 17 : X — Hom(Y, X x Y) is the map" taking x to y — (x,y).

Example 3.7. For the representable applicative A = Hom(E, —), the map ex : X —
Hom(E, X) sends x € X to the constant function at x. Meanwhile, fxy 7 sends f :
X xY — Z to the function Hom(E, X) x Hom(E,Y) — Hom(E, Z) given by: (¢,) —
le — f(¢(e),¥(e))]. For the map -y, we have:

vxy : Hom(E,Hom(X,Y)) - Hom(Hom(E, X), Hom(E,Y))
© = [p = [e— O(e)(¢(e))]]

As we discuss below, the implementation of an applicative in Haskell uses the analogues
of B and <y rather than «.

4. MONADSs

Once again, unless specified otherwise, all endofunctors are on the category Set of sets.

4.1. Basics. Recall that a monad is an endofunctor T, together with unit and multiplica-
tion natural transformations, € : 1 — T and u : T?> — T, which satisfy the associativity
and unit axioms:

pxopurx = pxo Tux px oerx = idrx = px o Tex

To verify the formula, one uses the fact that Xom(Y,XxY)y © (A X 1) = A(x 1) oax y.

8 IORDAN GANEV

Example 4.1. Our running example of the representable endofunctor Hom(E, —) is a
monad, where the unit takes x € X to the constant map at x in Hom(E, X), while the
multiplication map Hom(E, Hom(E, X)) — Hom(E, X) can be described as applying the
product-Hom adjunction and then pulling back along the diagonal map:

Hom(E, Hom(E, X)) — Hom(E x E, X) >+ Hom(E, X)
In other words, @ : E — Hom(E, X) is sent to the map taking e to ®(e)(e) € X.

4.2. The Kleisli category. Let T be a monad on the category Set®. The Kleisli category
Setr corresponding to T is defined as having the same objects as Set, with morphisms
given by:

Setr(X,Y) = Set(X, TY)
The identity in Setr(X, X) is given by the unit ex : X — TX, and the composition of
fi: X—=TYand f,: Y — TZ is given by:

T
frorfii=pzoThofi = (X 25 Ty 3 127 1% T7)
The associativity of composition, as well as the identity properties, follow from (and
are in fact equivalent to) the associativity and unit axioms of the monad T. There are
functors:

Fr

T

Set Setr

_/

Ur
defined as follows:
FrX = X UrX = TX
ExX Ly =x Ly Ty Ur(X 55 TY) = TX 25 12y 1% TY

In other words, Fr is the identity on objects and post-composes with the unit on mor-
phisms: Frf = ey o f. Meanwhile, Ut applies T to objects and, on morphisms, applies
T and then multiplies: Urg = py o Tg.

Lemma 4.2. We have:
(1) The functors above form an adjoint pair (Fr, Ur):
SetT(FTX, Y) = SetT(X, Y) = Set(X, TY) = Set(X, UTY).

(2) The monad of the adjunction is T = Ut o Fr. In particular,
Tf=Ur(eyof), ux = Ur(idrx), ex = Fr(idx).
(3) The functor U applied to morphisms defines a natural transformation
Set(—, T—) — Set(T—,T—)
of functors Set®? x Set — Set.

The discussion of this subsection holds for a monad on any category C

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 9

(4) Forany g =g1: X = TY and g : Y — TZ, we have:
(Urg)oex =g Ur(ex) =idrx Ur(Ur(g2)og1) = Ur(g2) o Ur(g1)

Sketch of proof. The first claim follows from definitions. The second also follows from
definitions, together with the unit axiom to show that Ur(ey o f) = pyoTeyo Tf = T¥f.
The third claim is a consequence of the facts that (1) Ur is a functor, (2) Ut applies T
to objects, and (3) Setr(X,Y) = Set(X,TY). The identities of the final claim are easily
verified using (1) the definition that Urg = uy o Tg, (2) the fact that y and € are natural
transformations, and (3) the unit axiom for T. U

Remark 4.3. There is a precise sense in which the Kleisli category, equipped with the
adjunction (Fr,Ur) is initial among all adjunctions giving rise to the monad T. The
category of T-algebras (also known as the Eilenberg-Moore category) is final.

Definition 4.4. Given a monad T and sets X and Y, the Kleisli composition is the map:
TX x Hom(X,TY) = TY
taking (%,) to py o Tg(%) = Ur(%).

Example 4.5. We continue the running example of the representable monad Hom(E, —).
To describe the Kleisli composition, we make use of the product-Hom adjunction:

TX x Hom(X,TY) = Hom(E, X) x Hom(X,Hom(E,Y))
~ Hom(E, X) x Hom(E, Hom(X,Y))
~ Hom(E, X x Hom(X,Y))

— Hom(E,Y)

where the third line uses the fact that a morphism into a product is the same as a
pair of morphisms into each factor, and the last map is post-composition with the
evaluation map X x Hom(X,Y) — Y. More explicitly, given ¢ € Hom(E, X) and
© € Hom(X,Hom(E, Y)), we can produce the function E — Y taking e to ©(¢(e))(e).

4.3. Monads as lax monoidal functors. Recall from Section 2.2 that for any endofunctor
F on Set we have a natural transformation

Hom(X x Y,Z) — Hom(FX x FY,F2Z7)
(natural in X, Y, Z). Now suppose F = T is a monad. Post-composing with the multipli-

cation map u : T> — T, we obtain a natural transformation:

(4.1) T = 1), : Hom(X x Y, Z) — Hom(TX x TY,TZ)

We have a number of ways to express this as a formula:
T (f)(p.q) = uz o Tlx = Tf(x, =) (@) (p)
= Ur(x — Tf(x,—)(q))(p)
= Ur(x — Ur(ezo f(x,—))(q))(p)

Set
axy = Ty oy (idxxy) : TX X TY = T(X x Y)

10 IORDAN GANEV

Then one can show that the triple (T, €7, a) satisfies to axioms of a lax monoidal functor,

and that B = T(?). Thus, every monad can be regarded as a lax monoidal functor. As a
consequence, we have a sequence natural transformation for monads: seq : [T—| — T[—].

However, not all lax monoidal functors are monads. We delay a detailed discussion of
examples until Section 6; for now we illustrate a way to check whether a lax monoidal
functor is a monad. Given a lax monoidal functor (A,,a), let 4 : A2 — A be a natu-
ral transformation. Then y defines a monad structure compatible with the applicative
structure if and only if:

(1) the natural transformation T(®) (defined as in Equation 4.1) coincides with the
natural transformation f (defined as in Definition 3.1).
(2) u satisfies associativity and the unit axioms.

5. HASKELL

5.1. Haskell types. Haskell is a strongly-typed language, which means that every Haskell
value and expression has a type. Additionally, to accommodate non-terminating func-
tions, every type is extended by adding a special value called the bottom; the resulting
category is known as Hask. There are numerous complications when developing mathe-
matical results with the Hask. At the same time:

From the pragmatic point of view, it's okay to ignore non-terminating func-
tions and bottoms, and treat Hask as bona fide Set. |]

Hence, in these notes, we model Haskell types with the category Set of sets. Given types
a and b we have the function type a->b. The type a->b->cC is the same as the type
a->(b->c). This reflects product-hom adjunction. More generally, the following types
are the same:

a->b->c->d a->(b->c->d) a->(b->(c->d)) a->b->(c->d)

5.2. Type constructors and functors. Haskell features type constructors that take a type
and produce a new type. Examples include the Maybe constructor, the List construc-
tor3, and the binary tree constructor BT ree:

data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
data BTree a = Empty | Node a (BTree a) (BTree a)

A type constructor may also take in multiple types to produce the new type, as in:

data Either a b = Left a | Right b
data ListEither a b = Nil | Consl a (ListEither a b) | Cons2 b (
ListEither a b)

3The list type with entries of type a is usually denoted [a].

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 11

In these notes, we focus on single-variable type constructors. A type constructor is a
Functor in Haskell if it is equipped with a way of producing a new function for every
function between the type variables. The minimal complete definition is:

class Functor f where
fmap :: (@ ->b) ->fa ->fhb

Alternatively, we can use infix notation:

<$> :: (a ->b) ->fa->fhbh
p <$> 2z = fmap p z

To connect with category theory, a Functor in the sense of Haskell reflects an endo-
functor of Set this category if it satisfies the identity and composition axioms:

fmap id = id -- identity axiom
fmap (f . g) == fmap f . fmap ¢ -- composition axiom

Functors defined in Haskell are expected to respect identities and composition, though
there is no way to enforce this in Haskell. Conversely, an endofunctor F on Set defines
a natural transformation Hom(—, —) — Hom(F—, F—) of functors Set®F x Set — Set;
this corresponds to fTmap. The Maybe, List, and BTree constructors are “naturally”
functors.

5.3. Applicatives. The analogue of lax monoidal functors in Haskell are applicatives.
The applicative type constructor class is often defined as:

class Functor f => Applicative f where
pure :: a ->f a
(<*>) :: f (a ->b) ->fa->fb

so that pure corresponds to the unit € and <*> corresponds to the map 7 (see Section
3.4). The functor structure map fmap can be recovered as:

fmap :: (a ->b) ->fa->fb

fmap phi z = (pure p) <*> z

We also have the analogue of B given by:

liftA2 :: (@ ->b ->¢c) ->fa->fb->fc

LiftA2 pzy =p <$> x <*> vy

More generally, we can lift a map of any number of variables. In pseudo-Haskell:

1liftAn :: (a1l -> a2 -> ... ->an ->b) ->fal ->f a2 -> ... -> f an
-> f b
LiftA2 p z1 z2 ... zn = p <$> z1 <*> z2 <*> ... <*> zn

The analogue of the map & does not appear in the official documentation, but can be
defined as:

12 IORDAN GANEV

(>*<) :: fa->fb->f (a, b)
(>*<) z w = (pure p) <*> z <*>w
where p x y = (Xx,y)

The operator <*> can be recovered from either L1ftA2 or >*< via:

1iftA2 id
fmap ($) . (>*<)

(<*>)
(<*>)

For applicatives, the sequence map is denoted sequenceA, and can be defined as:

sequenceA :: Applicative => [f a] -> f [a]
sequenceA [] = pure []
sequenceA (p:ps) = fmap cons (p >*< (sequenceA ps))

5.4. Monads. A type constructor m is considered a Monad in Haskell if it is equipped
with (1) a way of extending any functiona -> m b toa functionm a -> m b, and (2)
a map from any type a to the output type m a. The minimal complete definition is:

class Monad m where
(>>=) ::ma->(a->mb) ->mb
return :: a ->m a

A monad in Haskell is expected to satisfy the following identities (which cannot actually
be enforced in Haskell):

-- X::a zZ::m a f::a ->mb g::b ->mc

return x >>= f = f X -- left identity
z >>= return = z -- right identity
z >>= (\x -> f x >=h) = (z >>= f) >=h -- associativity

Moreover, a Monad in Haskell is in particular a Functor:

1iftM :: Monad m => (a -> b) -> (ma ->m b)
1iftM f z = z >>= (return . f)

The identity and composition laws for the LiftM follow from the identity and asso-
ciativity laws for the monad m. Table 1 gives a dictionary between constructions and
identities in Haskell and concepts in category theory in the context of monads.

It is easy to see from Lemma 4.2 that a monad in the sense of category theory defines a
Monad in the sense of Haskell. In Appendix A, we give a proof of the converse: a Monad
in Haskell gives rise to a ordinary category theory monad as long as the identity and
associativity axioms hold.

We give an implementation of the composition rule mentioned in Section 1:

compose :: (a ->mb) -> (b ->mc) ->a ->mc
compose gl g2 x = (gl x) >>= g2

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 13

Haskell Category Theory
Monad m Monad T : Set — Set
f::a->m b f:X=TY
z >>= f Ur(f)(z)
return::a->m a €:1—-T
prod::m(ma)->ma, (p -> p >>= id) ux : T?X — TX
return x >>= f = f x (Urf)oex =f
z >>= return = z Ur(ex) = idrx
z>>=(\x->f x>>=h) = (z>>=f)>>=h Ur(Ur(h) o f) = Ur(h) o Ur(f)
liftM f z = z >>= (return . f) Tf = Ur(eyof)

FIGURE 1. Dictionary between Haskell and category theory in the context of monads.

Remark 5.1. Haskell also has an operator (>>) :ma->mb->mb for a monad m. This can
be recovered from (>>=) by using a constant function in the second factor:

z>>wW = z>>= (\X -> w)

5.5. do blocks. Haskell features do blocks as a way to abbreviate compositions in the
Kleisli category and the functor Ur. To illustrate the motivation, let z:ma and w:mb. We
will often want to perform computations like:

z >>= [\x ->w >>= [\y -> u x y]]

where z::ma, w: :mb, and u is a function of type a->b->mc. Walking through this:
given X: :a, we have the function b->mc taking y to u X y. This function feeds in as
the second input of the operator >>= with w: :mb being the first input. The operator
returns an output of type mc. Recalling that X: :a was fixed, we see that we obtain a
function a->mc. This function in turn feeds as the second input of the operator >>=
with z: :ma being the first input. Hence, we the final output is of type mc.

Using do blocks, this simplifies to:

do

X <- Z
y <-w
uxy

In general, a code block of the form

do
X <- 2

14 IORDAN GANEV

is equivalent to:

z >= [\x -> do ...]
Notes:

e The final line of a do block must be an expression of type m a for some type a.
One can think of the type of the entire do block as having the type of the last line.

e A non-final line may be of the form v <- expr, where expr has type m a for
some type a. The variable v is a dummy variable of type a used to define a
function with input type a.

e Alternatively, a non-final line may be consist of just an expr of type m a for
some type a. This line can be replaced by v <- expr with no change in the
functionality of the code block. (This corresponds to defining a constant function
and can be avoided with the operator >>, see remark 5.1.)

e The remaining lines are let statements, which are less relevant for categorical
considerations.

Executing a do statement amounts to performing a composition of morphisms in the
Kleisli category. Conceptually (though not necessarily practically), one can think of
going from the last line to the first.

5.6. The sequence map for monads. Recall that the sequence function is defined for
any applicative. In Haskell, the sequence function seems to be mostly used for monads
(the version for applicatives is called sequenceA). The idea of the sequence function is
to capture the following function concept in (pseudo-)Haskell:

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence [x1,...,xn] = do x1 <- pl
X2 <- p2
XN <- pn
return [x1,x2,...,Xn]

Obviously, the above doesn’t compile; an actual implementation of the sequence map is:

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (p:ps) = p >>= \x -> (sequence ps) >>= \ys -> return (x:ys)

One can also implement the map T(%), as well as nil and cons:

T2 :: (@ -=>b ->c¢c) ->ma ->mb ->mc
T2 f z u=2z >>= (\X -> u >>= return . f Xx)

nil = [] :: [a]

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 15

cons :: a -> [a] -> [a]
cons X ys = X:ys

Taking b = ¢ = [a], this leads us to implement the sequence function as a fold:

sequence :: Monad m => [m a] -> m [a]
sequence = foldr (T2 cons) (return nil)

6. EXAMPLES

Here are examples of applicatives and monads on the category of sets. For each monad
T, we comment on:

the monad structure maps u and e,

the Kleisli composition TX x Hom(X, TY) — TY taking (z,g) to Ur(g)(z),
the map T : Hom(X x Y, Z) — Hom(TX x TY,TZ), and

the sequence map seqy : [TX] — T[X].

For each applicative A that is not a monad, we comment on:

e the applicative structure maps y and a (and, if relevant, f and 7),
e the sequence map seqy : [AX] — A[X], and
e the failure of being a monad.

6.1. The maybe monad. Consider the functor TX = 1 + X, which acts on morphisms
by extending a function f : X — Y to the function 1 +X — 1+ Y sending 1 to 1.
This defines a monad with € : X — 1+ X including into the second cofactor, and
p:T?X =1+1+ X — 1+ X collapsing both factors of 1 into the single one. The Kleisli
composition map:

TX x Hom(X,TY) = (X +1) x Hom(X,14+Y) > TY =1+ Y
extends a function X — 1+ Y by sending 1 to 1. The map:
T? :Hom(X x Y, Z) — Hom(TX x TY,TZ) =Hom(1+ X+ Y + X x Y, 1+ Z)

extends a function X x Y — Z by sending the cofactors 1, X, and Y to 1. More generally,
to describe the sequence map, let [k, ..., k,| be a list with entries in 1 4 X, so that each
k; is either equal to 1 or belongs to X. Then:

[x1,...,x4) € [X] €1+ [X] if kj =x; € X forall i

ki,.... ky]) =
seallla) {1 €1+ [X] otherwise

In other words, if any of the k;’s is equal to one, then the output of the sequence map is
1, and otherwise the sequence map is the identity.

16 IORDAN GANEV

6.2. The overwrite monad. Consider the endofunctor TX = X + S for a fixed set S. This
is a monad with unit being the obvious inclusion X — X + S, while

px: X+S+5—=X+S5

is the identity on X and collapses both S cofactors into the single one using the identity
map. The Kleisli composition map

TX x Hom(X,TY) = (X+S) x Hom(X,Y+S) - TY =Y+ S
extends a function X — Y + S by sending S to S identically. The map:
T®?) : Hom(X x Y, Z) — Hom(TX x TY,TZ) = Hom((X 4+ S) x (Y +5),Z + S)
takes f : X X Y — Z to the map:
XxY X xS

NN e

noting that (X +S) X (Y+5) = X XY+ X xS+ S5 x Y+ S x S. We think of the overwrite
monad as a generalization of the maybe monad, where failure produces an element of
S. If we have two failures, the first overwrites the second, hence the name. (One may
altenatively choose the opposite convention, where a later failure overwrites an earlier
one.) More generally, to describe the sequence map, let [ky, ..., k] be a list with entries
in X + S, so that each k; is either belongs to X or to S. Then:

[x1,...,x4) € [X] CS+[X] ifkj=x; € Xforalli
seqx([k1, ..., ku]) = e .
s=kieSCS+[X] where 7 is minimal with k; € S
In other words, if any of the k;’s is in S, then the output of the sequence map is the first

of these, and otherwise the sequence map is the identity.

6.3. The validation applicative. Now consider the endofunctor AX = X + M where M
is a monoid. This is an applicative with unit being the obvious inclusion and the map
a: (X+M)x(Y+M)— X xY+ Mis indicated in the following diagram:

XxY XxM MxY

N N LT

where mult : M x M — M is the monadic multiplication. To describe the sequence map,
let [k1, ..., kx| be a list with entries in X + M, so that each k; is either belongs to X or to
M. Then, if k; = x; € X for all i, we have:

seqx([k1, ..., ku]) = [x1,...,x4] € [X] € M+ [X]

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 17

Otherwise, let (iy,...,is) be the indices, in order, with kl-]. € M, and set m; = ki].. With
this notation:

seqX([kl,...,kn]):ml-mz """ mSEM§M+[X]
In other words, if any of the k;’s is in M, then the output of the sequence map is the
product of these, and otherwise the sequence map is the identity.

We claim that, as long as M is non-trivial, the validation applicative is not a monad. First
we compute the map from Equation 2.1 in this case; it takes f : X X Y — Z to the map
from (X + M) x (Y + M) to (Z+ M) + M indicated by the following diagram:

XxY XxM MxY Mx M

NN A

Now, take a potential monad structure yz : Z 4+ M+ M — Z 4+ M. Compatibility with
the unit of the applicative implies that yz = idz + (idy,idy). On the other hand,
compatibility with the diagrams above implies that that the multiplication M x M — M
coincides with the projection map 771 onto the first factor. In other words, 1 = 71 (1,m) =
mult(1,m) = m for all m € M. This is only possible if M is the trivial monoid.

6.4. The list monad. The list functor TX = [X] = List(X) = Y, X" defines a monad
with € : X — [X] including X as singleton lists, and : T2X — TX concatenating a list
of lists into a single list. The Kleisli composition:

[X] x Hom(X, [Y]) = [Y]
takes a list [x1,...,x,] and a function f : X — [Y] to the concatenation of the lists
f(x1), .., f(x5). The map
T® : Hom(X x Y, Z) — Hom([X] x [Y],[Z])
takes f : X x Y — Z to the function taking the pair of lists (x,y) to the list consisting of

all f evaluated on all combinations of pairs of elements formed by taking one element
of x = [x1,...,x,] and one element of y = [y1, ..., Ym]:

f(xy) | i=1,...,mj=1,...,m]

In particular, the length of the output list is the product of the lengths of the input lists.
More generally, the sequence map takes a list of lists [xy, ..., X,] to the list of all lists of
length n whose i-th entry is an entry of x;.

seq([x1, ..., Xn]) = [[X1,i1, X00s -+, X)) | 71 =1,...,len(x;),...,in =1,...,len(x;)]

The number of such lists is the product of the lengths of the x;. If any of the input lists
is empty, then the output list is empty.

Remark 6.1. The maybe monad includes into the list monad via the inclusion 1 + X —
[X] as the lists of length at most one. This inclusion commutes with the unit maps.

18 IORDAN GANEV
6.5. The state monad. Fix a set S, the ”state”. The functor
TX = Hom(S, X x S) ~ Hom(S, X) x End(S)

can be thought of all ways to update the state (the End(S) factor) and producing a
“value” in the set X. It takes f : X — Y to the map that post-composes with f x 1. This
functor defines a monad with € : X — Hom(S, X x S) taking x to the function s — (x,s)
for all s. The product

#: X — Hom(S,Hom(S, X x S) x S) — Hom(S, X x S)

is post-composition with the evaluation map Hom(S, X x S) x S — X x S. The Kleisli
composition:

Hom(S, X x S) x Hom(X,Hom(S,Y x S)) — Hom(S,Y x S)
is equivalent, via the (x,Hom) adjunction, to a map
Hom(S, X x S) x Hom(X x S,Y x S) — Hom(S,Y x S)
and is given by composition. The map
T® : Hom(X x Y, Z) — Hom(Hom(S, X x S) x Hom(S,Y x S),Hom(S,Z x S))

takes f : X X Y — Z to the function mapping the pair (¢ : S - X xS, p: S = Y x §)
to the composition:

s P xxs T xxyxs S zxs

The sequence map seqy : [Hom(S, X x S)] — Hom(S, [X] x S) takes a list of functions
(1, ..., ¢n] to the function
S ([xll' . -/xl’l]lsn)

where the x; € X and s; € S are defined recursively via:
S0 =S5, and (xi,8)) = ¢pi(si—1) fori=1,...,n.

In other words, the x; are the values produced while successively updating the state, and
sn is the final state. Equivalently, seqx([]) = [s — ([],s)] and seqx (¢ : ¢) = [s — (x : x,7)]
where seqx(¢)(s) = (x,t) and ¢(t) = (x,7).

Remark 6.2. The input/output monad I0 can be regarded as a state monad where the
state represents “the real world”:

I0 a < theRealWorld -> (a, theRealWorld)

This is not how the I0 monad is actually implemented, but this perspective illustrates
how Haskell handles side effects in a purely functional way by modeling them as a
change in state. An expression of type I0 a represents an action that produces a value
of type a and changes the state of the real world (i.e. has side-effects) without actually
implementing this change (hence maintinaing purity).

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 19

6.6. The free semigroup module monad. Recall that a semiring is defined in the same
way as a ring, except without the assumption of additive inverses. Let R be a semiring
and consider the functor

TX = Hom¢(X, R),

where Homg¢ denotes the set of functions with finite support. This is a covariant functor
via pushforward of functions:

T(X L5 Y) : Homg(X,R) = Hom(Y,R), ¢ fup= |y~ Y ¢(x)
xef(y)

Relevant instances of this functor are:

e The natural numbers IN. In this case, TX = Bag(X) is the Bag endofunctor. A
bag of elements of X can also be thought of a multi-set; every element has some
multiplicity. There is a forgetful natural transformation of monads List — Bag.

e The real numbers R (or any field). In this case, TX is the vector space with basis
given by the elements of X.

e The Boolean set {0,1} with OR as addition and AND as multiplication. In this
case, TX = P¢(X) is the set of finite subsets of X.

Observe that TX is the free R-module on the set X, and Tf is a linear map for any
f: X — Y. If X is finite, then TX ~ RIX| is itself a semiring with coordinate-wise
operations. If X is not finite, then TX is a semiring without multiplicative unit.

We now discuss the monad structure. The unit ex : X — Hom((X, R) picks out the
delta functions, so that ex(x)(x’) = 1 if x = x” and zero otherwise. In other symbols,
€x(x) = éy. The monad product is given by:

ix : Hom¢(Hom¢(X, R), R) — Hom(X, R)

D |x—) D(¢)p(x)

¢p€Hom¢(X,R)
The sum is well-defined due to the finite support condition. The Kleisli composition is
given by:
Hom¢(X, R) x Hom(X, Hom(Y, R)) — Hom¢(Y, R)

(¢, f) = |y = Y () f(2)(y)

xeX

Note that (dy, f) is sent to f(x). The Kleisli composition can be thought of as a convolu-
tion; let 11 : X XY — X and mmp : X X Y — Y be the projection maps. Then (¢, f) goes
to (712)« (715 - f), where 715 is the pullback, (712) is the pushforward, we regard f as a
function X x Y — R, and - denotes point-wise multiplication.

20 IORDAN GANEV

Moving on, we have:

T® : Hom(X x Y, Z) — Hom(Hom¢(X, R) x Hom¢(Y, R), Hom¢(Z, R))

f= @)= |z)Y o(x)y(y)
(xy)ef-1(z)

Another interpretation: (¢, ¢) defines a function ¢ X 1 : X X Y — R x R, which we can
post-compose with the multiplication map multg : R x R. Then T(?) f sends (¢, §) to the

pushforward f,(multg o (¢ x ¢)). We make two final remarks about T?) f: (1) it is not
linear, but bilinear, (2) it sends (Jy,) to 6 Flxy)-

Finally, we the sequence map is given by:
seqy : [Hom(X, R)] — Hom([X],R)

{H?zl ¢i(x;)) iflen(x) =n
0

otherwise

[¢1,...,4)n] —> [XP—>

In particular, the sequence map factors through a map Hom(X,R)" — Hom(X",R),
and sends a list of delta functions to the delta function on the corresponding list:
[0xys -+ s Ox,] ¥ Oy, x,)- For m = 0, we have that seqx([]) = Jj is the delta function
at the empty set. We revisit the relevant instances of this functor:

e For R = IN, the sequence map corresponds to the well-known natural transfor-
mation List o Bag — Bag o List. Given a list of n bags, the multiplicity of a list in
the output bag of lists is the number of ways the list can be realized via taking
the first element from the first bag, the second from the second bag, etc. So only
lists of length 7 can have non-zero multiplicity.

e If R is a field, then the sequence map restricts to the natural map from the direct
sum of n copies of a vector space to the tensor product of n copies of the same
vector space: V" — V& taking (v1,...,0,) t0 01 @ - - - @ Uy,

e Finally, for the finite power set monad, the sequence map takes a list of subsets
[S1,...,S4] of X to the subset of [X] consisting of all lists [xi,...,x,] where x;
belongs to S;.

Remark 6.3. The power set monad TX = P(X) under direct images does not exactly fit
into the set of examples discussed in this section since X may be infinite. However, the
same formulas still hold. In particular, the sequence map is defined in exactly the same
way as the sequence map for the finite power set monad.

Remark 6.4. The Giry monad is a monad on the category of measurable spaces that
sends a measurable space to the set of probability measures on that space, which is
itself a measurable space in a natural way. While it cannot be strictly regarded as “free
semigroup module monad”, there are similarities: pushforward of measures is used to
define the functor structur, the unit is given by delta functions, and the multiplication is
given by taking expected value using a formula similar to that of ux above.

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 21

6.7. The representable monad. Let E be a set. We have already discussed the repre-
sentable enofunctor TX = Hom(E, —) in detail. Here we note a few additional observa-
tions. The map T(?) can be described as:

T®? : Hom(X x Y, Z) — Hom(Hom(E, X) x Hom(E,Y), Hom(E, Z))
[(@) = foA (¢ x)]

So that T®) f(¢, 1) sends e to f(¢(e), ¥(e)). We have shown that the sequence map
sends [¢1,...,¢n] € [Hom(E, X)] to the map sending e to [pi(e),...,Pu(e)] € [X]. One
can describe this map as falling out of properties of how product and coproducts interact
with Hom sets:

seqy : [Hom(E, X)| = i:OHom(E, X)" = i‘aHom(E,X”)
— Hom(E, i X") = Hom(E, [X])

n=0

6.8. ZipList. The Haskell type constructor ZipList corresponds to the endofunctor
sending a set X to the set of all lists with entries in X, where each list can be finite or
infinite. Given a map f : X — Y, the corresponding map on ziplists applies f entry-wise:

ZipList(f)([x1,x2,...]) = [f(x1), f(x2),...]

In particular, ZipList(f) preserves lengths. The endofunctor ZipList is an applicative
with ¢ : 1 — ZipList(1) selecting the unique infinite list. Consequently, we have:

ex: X — ZipList(X); x =[x, x,x,..]
The map « is given by taking the diagonal:
ZipList(X) x ZipList(Y) — ZipList(X xY)
x,y = [(x1,51), (x2,¥2), (x3,93) . .|
The sequence map seqy : [ZipList(X)] — ZipList([X]) is given by:
[x1,%2,...] — [[x1[1],x2[1],x3[1],...]

[x1[2],%2[2], x3[2], . ..]
[x1[3],x2[3], x3[3], . . .]

—

so that the first entry of the output list is the list of first elements, the second is the list
of second elements, and so on. The length of the output list is the minimum length of
the lists in the input list.

We henceforth abbreviate ZipList by just A, and argue that there is no monad structure
on A compatible with the applicative structure. To this end, we first regard A as an

22 IORDAN GANEV

endofunctor and compute the map of Equation 2.1 as taking f : X x Y — Z to the map
AX x AY — A%Z defined as:

o y) = [[f (e y1), f(x1,y2), f(x1,93) -]

[(x2,y1), f(x2,92), f (%2, 93) - -]

U (x3,01), £ (x3,92), f (%3, 93) -]
where x = [x1,x,x3,...] and y = [y1,¥2,V3,...]. Now suppose we have a natural
transformation y : A2 — A, such that the map AX x AY — A%Z post-composed with
recovers the applicative structure AX x AY — AZ. By inspection of the above formulas,
the only candidate map yz : A2Z — AZ is the ”diagonal” map that takes the first

element of the first list, the second element of the second list, etc., stops at the k-th list if
the length of the (k + 1)-st list is less than k + 1.

However, this operation is not associative. For example, take Z = {1} and consider the
element

(111,10, [1,1])] € A°{1}.
We have:

uz o paz([[[1L ([, (1)) = pz(([1], [1,1]]) = [1,1]
but:

pz o Apz([[[1], ([, (L)) = w2 ([0,) = [1]

Remark 6.5. We note that there are natural transformations:
Hom(N, —) — ZipList — Hom(IN, Maybe(—))

which (1) are injective on any set X, (2) commute with the unit maps, and (3) are com-
patible with the applicative structures. The first picks out the infinite lists of ZipList,
while the second can be described as on a set X as:

ZipList(X) — Hom(N, 1+ X)

i <
N P {xn if n <len(x)

1 otherwise

One can verify that Hom(IN, Maybe(X)) is indeed a monad, and that its multiplication
does not preserve ZipList.

6.9. Summary. The following two diagrams illustrate the interrelations between the ex-
amples we have considered.

X —— Maybe(X) «—— List(X) — Bag(X) — Pr(X) —— P(X)

l

X+M

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 23

(where M is a monoid in Set)

X —— Hom(1,X) «—— Hom(N, X) « > Hom(IN, Maybe(X))

\/

ZipList(X)

In both diagrams, the composition from X to any of the items is the unit map, and all
items in the top row are monads, while X + M and ZipList(X) are only applicatives.
Without being precise, we also note that there are “maps of monads”

Homg(X, R1) — Hom¢(X, Ry), Hom(E;, X) — Hom(Eq, X)

for any map of semirings Ry — Rp and any map of sets E; — E,. In particular, there is
a canonical map Bag(X) — Hom((X, R) for any semiring R and, for any set E, the unit
X — Hom(E, X) is pullback along the unique map E — 1. Finally, we note that there is
a natural transformation from the representable monad Hom(S, —) to the state monad
Hom(S, — x S) sending ¢ : S — X to the map s — (¢(s),s).

7. EXERCISES

(1) Let F : C — D be a functor. Show that the application of F to morphisms defines a
natural transformation Hom(—, —) — Hom(F—, F—) of functors C°P x C — Set.

(2) Let (F,e,a) be a lax monoidal functor on Set. Prove that the following diagram
commutes:

€Hom(X,Y) X1 XHom(X,Y),X

d
Hom(X,Y) x FX FHom(X,Y) x FX F(Hom(X,Y) x X)

lind lF(ev)

Hom(FX, FY) x FX ad » FY

where map from the top left to the bottom left is F applied to morphisms in the
first factor. (Suggestion: given f € Hom(X,Y'), consider the map 1 — Hom(X,Y)
that picks out f. Also use the naturality of €)

(3) Let F : C — D be a functor, and suppose both C and D have products and a
terminal object.
(a) Define a natural transformation:

cart : F X (— X —) = (= xpq)—) o (FxF)

of functors C x C — D. (Hint: use the projection maps 71; : X x ¥ — X and
7T . XxXY — Y)

(b) For amonad T, argue that cartx y o exxy = €x X €y as morphisms from X x Y
toTX x TY.

24

IORDAN GANEV

(c) The functor F is said to be Cartesian if cart is a natural isomorphism. Argue
that the list endofunctor is Cartesian, but the bag endofunctor is not.

(4) Show that requiring the associativity axiom for a monad T is equivalent to requir-
ing the multiplication in the Kleisli category to be associative. Similarly, show
that the unit axiom for a monad T is equivalent to the identity properties of
ex € Setr(X, X) in the Kleisli category.

(5) Completing the discussion of Section 4.3, verify that the associativity and unit
axioms of a monad (T,€, u) translate to the associativity and unit axioms of the
proposed lax monoidal functor (T, €,).

(6) Given a monad T, recursively define y(") :THX — TX as:
u© =idryx
u = o,y forn>1
Show that 1" = ("1 o Typ,2y for n > 2.

(7) Let R be a semiring and let T = Homyg, (—, R). Define a map:
m™ X x TX x T2X x --- x T"X — R

(o, P1, -, pu) = [[di(i1)
i=1

Recall the map () : T"*1X — TX. Show that:

n"(@©)(x) =} m"(®,¢,x)
¢

where the sum is over all ¢ = (¢1,...,¢y) € TX x --- x T"X and (O, P, x) =
(®/¢1/---/§bn1x)-

(8) Let T be a monad. Recall the Cartesian map from Exercise 3; we compose it with
the obvious inclusion:

carty y

T(X xY) X TX sy TY &5 TX x TY
Applying T}({zg/ and pulling back along this composition, we obtain:

2
) (incocarty y)*

Hom(X x Y, Z) =% Hom(TX x TY,TZ) = —"" Hom(T(X x Y), TZ)

Prove that, in general, this composition is NOT just the functor T applied to
morphisms. For example, take T to be list monad.

(9) Let T be a monad, and let p € TX for some set X. Show that seq([p]) = T[x —
[x]](p). In other words, we apply T to the morphism X — [X] that takes each

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 25

element to the singleton list, and evaluate at p € TX. Furthermore, show that
seq([exx]) = e[xj[x].

(10) Let M be a monoid. Argue that X — X x M is a monad. Compute the Kleisli
composition and sequence maps.

(11) Let F be an endofunctor on the category of sets.
(a) Generalize the map of Equation 2.1 by induction to a natural transformation

Hom (X7 X - -+ x Xy, Z) — Hom (FXy X -+ X FX,, F"Z)
of functors (Set°P)” x Set — Set. (There are choices, but proceed left to right.)

(b) In particular, considering the diagonal in (Set°P)”, we have a natural trans-

formation
Hom (X",Z) — Hom ((FX)",F"Z)
of functors Set°P x Set — Set.

(c) Now suppose F = T is a monad. Using part (c) and u : T> — T define a
natural transformation:

T{") : Hom(X", Z) — Hom((TX)", TZ)

with T : Z — TZ being the unit, T\'), : Hom(X, Z) — Hom(TX, TZ) being
the functor T applied to morphisms, and T(?) coinciding with the definition
given above.

(d) Use the T(" to define a natural transformation:
T™) : Hom([X], Z) — Hom([TX], TZ)
Taking Z = [X], argue that idx) is mapped to the sequence map seqy.

(e) Implement T*) as a function in Haskell via:

star :: Monad m => ([a]-> b) -> [ma] ->mb
star f [] = return (f [])
star f (p:ps) = p >>= \x -> star (\ys -> f (x:ys)) ps

Argue that the function star fisequalto LiftM f . sequence. In par-
ticular, star 1id is equal to sequence.

REFERENCES

[Mil17] Bartosz Milewski, Applicative Functors, 2017.

[Mil1g] , Category Theory for Programmers by Bartosz Milewski | Blurb Books, 2019.
[oH] University of Helsinki, Haskell MOOC. Accessed: 2025-08-13.

[Rie17] Emily Riehl, Category Theory in Context, Courier Dover Publications, 2017.

26 IORDAN GANEV

APPENDIX A. CHARACTERIZATION OF MONADS

Consider the following data:

e An endofunctor T : Set — Set.

e A natural transformation € : 1 — T of endofunctors of Set.

e A natural transformation p : Hom(—, T—) — Hom(T—, T—) of functors Set°® x
Set — Set.

For any X, set ux = prxx(idrx) : T2X — TX. Itis easy to see that y : T2 -5 Tis a
natural transformation.

Proposition A.1. The data (T, €, u) is a monad if and only if the following identities hold:

pxy(g)oex =g pxx(ex) =idrx pyz(82) o pxv(81) = pxz(pyz(82) © g1)
where g =91 : X > TYand go: Y — TZ.

Sketch of proof. The forward implication follows from Lemma 4.2 above, setting p to be
the natural transformation on morphisms induced by Ur. For the opposite implication,
one must show that the associativity and unit axioms hold. The easiest is the left unit
axiom, which follows immediately from definitions and hypotheses:

px oerx = prx,x(idrx) o erx = idrx

The verification of the right unit axiom is:

px o Tex = prx x(idrx) o Tex = px x(idrx o €x)
= px,x(ex) = idrx

where the first equality follows from definitions, the second from the fact that p is a
natural transformation, and the fourth from the hypotheses. Finally, for associativity:

ux o Tux = prx,x(idrx) o Tpx = prox x(idrx o pix) = prax x (px)
= PTZX,X(I/‘X oidpy) = px o PTZX,TX(idTZX) = UX O UTX

where we have twice used the fact that p is a natural transformation. O

APPENDIX B. GENERALIZED SEQUENCE MAP

B.1. Introduction. In this appendix, we give a sketch of a generalization of the sequence
map beyond the List inductive type. We assume familiarity with F-algebras and initial
algebras.

To warm-up, recall that List(X) is the initial algebra of the endofunctor Fx : S — 1+ X X
S. Another example to consider is that of binary trees. The set BTree(X) of binary trees
with nodes labeled by X is the initial algebra of the endofunctor Fx : S — 1+ X x S%. In
both cases, we have the assignment X — Fx constittutes a functor Set — End(Set).

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL 27
B.2. Statement. Now fix a non-negative integer d > 1 and consider a functor:
Set? — End(Set), X = (Xy,...,X;) — Fx
that takes a tuple of sets to an endofunctor of Set. We make the following assumptions:
Assumption 1: The endofunctor Fx has an initial algebra for every X; denote
it as 7(F; X1, ..., X4). This gives a functor #(F; —) : Set? — Set.
Assumption 2: For each X and S, the set Fx(S) is a coproduct of terms

of the form ™0 x X{"' x --- x X' for some m; € N.

Let (A, €,«) be a lax monoidal endofunctor of Set. By abuse of notation, we also write A
for the endofunctor of Set? given by applying A to each factor:

X— AX = (AXy, ..., AXy)
We now proceed to define a generalized sequence natural transformation:
seqx : 1(F; AX) — An(F;X)
(natural in X) of functors Set? — Set.
B.3. Steps in construction. Here is a sketch of the steps in defining this natural trans-
formation:
e Recall Assumption 1. Make the following abbreviations of the initial algebras:
n(X) =n(FXy,...,Xy) n(AX) :=n(F; AXq,..., AXy).
Initial algebras are fixed points, so we have isomorphisms

ox t Ex(n(X)) — (X)) cax: Fax(1(AX)) — n(AX)

e Recall Assumption 2. The natural transformation « and the associativity axiom
allow one to define a map* on each cofactor:

(AS)™0 x (AXy)™ x - - x (Xg)™ — A(S"0 x X[x - x XH)

Moreover, the universal property of coproducts implies that there is a map AX +
AY — A(X+Y) (this is true for any endofunctor). We conclude that there is a
natural transformation

Kg : PAx(A o S) — Ao Px(S)

(natural in S) of endofunctors of Set.
e The composition
K A
Eax(An(X)) ™ AF(5(x)) ™% an(x)

4This can be done by induction in a straightforward fashion; we omit the details.

28 IORDAN GANEV

is precisely an Fx-algebra structure on Ay (X). The initiality of 7(AX) now pro-
vides a map (often referred to as a catamorphism):

7(AX) = Ay (X)
which is what we take as the generalized sequence map.

Thus, we have a commutative diagram:

Fax(n(AX)) — X590 b (An(X) — 1 AR(5(X))

CAXl lA(CX)

seqy

1n(AX) » An(X)

where the vertical maps are isomorphisms.

B.4. Examples. We invite the reader to revisit each of the examples in Section 6 and
comute the sequence map using the binary tree endofunctor BTree instead of the list
endofunctor. In the case of the representable monad Hom(E, —), the sequence map

BTree(Hom(E, X)) — Hom(E, BTree(X))

takes a binary tree of functions E — X to the function that takes e € E to the binary tree
of elements of X formed by evaluating each function at e.

ArrENDIX C. EPSILON

Let (A, ¢,) be a lax monoidal functor, and let X and Y be sets. We claim the following
diagram commutes for any x € X and y € Y-

X XY « Py 1x1~1 7 » X XY
Pxy
exxey Al x Al o Alx1)~ Al ~
lexAy A(x,y)l
AX x AY txx s A(X X Y)

where, by abuse of notation, x : 1 — X, ¥y : 1 — Y, and (x,y) : 1 — X X Y are the
maps that pick out the indicated points. The commutativity of the triangle in the middle
follows from the unit axiom. The commutativity of the bottom square commutes follows
from the naturality of «. The commutativity of the outer diagrams on the right and the
left follow from the definition of €. Consequently, the following diagram commutes:

XxY

(C.1) GXy YY

axy

AX x AY : y A(X X Y)

NOTES ON LAX MONOIDAL FUNCTORS, MONADS, AND HASKELL

We claim that the following diagram commutes as well:

X]

[ex] €[x]

seqx

[AX] . A[X]

We proceed by induction using the isomorphism (nilx,consx) : 1+ X x [X] —

the empty list, we have:

seqx o [ex](nilx(1)) = seqx(nilax(1)) = ex)(nilx(1))
Given a non-empty list consx(x, x), we have:

seqx o [ex](consx(x,x)) = seqx(consax(ex(x), [ex](x)
(ex(x), seqx([ex](x))

(ex(x), ex(x))
= A(consx) o ax x) © (€x X €[x])(x,X)
= A(consy) o ex, [x)(x,%)
= €[x) © consx (x, x)

= A(consx) o ax x

]
= A(consy) o ax x|
[

29

[X]. For

where the first equality follows from the definition of [ex], the second from the definition
of seqy, the third from induction hypothesis, the fourth from a basic rearrangement, the
tifth from the commutativity of the diagram in Diagram C.1, and the sixth from the

naturality of €.

	1. Introduction
	2. Preliminaries
	3. Lax monoidal functors
	4. Monads
	5. Haskell
	6. Examples
	7. Exercises
	References
	Appendix A. Characterization of monads
	Appendix B. Generalized sequence map
	Appendix C. Epsilon

