
NOTES ON “GRAPH NEURAL NETWORKS ARE DYNAMIC PROGRAMMERS"

IORDAN GANEV

1. Introduction

These are notes on the technical aspects of the paper “Graph Neural Networks are Dy-
namic Programmers” [DV22]. We formulate integral transforms using bags and lists.
The update step of a dynamic programming algorithm can be interpreted as an inte-
gral transform; a prominent example is the Bellman–Ford algorithm. Furthermore, the
message-passing step of a graph neural network can also be stated in terms of a certain
integral transform.

2. Bags and lists

2.1. Bags. Let R a set. We denote by bag(R) the free commutative monoid on R. Equiv-
alently, bag(R) is the set of all finite formal linear combinations of elements of r with
coefficients in the natural numbers N = {0, 1, 2, . . . }. With this interpretation in mind,
we write an element of bag(R) as a formal sum: ∑r∈R nrr, where only finitely many of
the coefficients nr ∈ N are nonzero. Yet another characterization of bag(R) is as the set
of functions R → N where only finitely many elements of R map to a non-zero natural
number; that is, the set of finitely supported functions. The zero element of bag(R) is
the empty bag, which corresponds to the constantly zero function. As an endofunctor of
the category of sets, bag is a monad under a form of concatentation, with singleton bags
forming the unit. Algebras for bag are commutative monoids in the category of sets.

2.2. Lists. We denote by list(R) the free monoid on R. As a set, list(R) = 1 + R +
R2 + . . . , where ‘+’ denotes disjoint union, Rn = R× R× · · · × R is the n-fold product
of R with itself, and 1 is the one-element set corresponding to the empty list [] (which
is also the unit of list(R)). We write an element of list(R) as [r1, r2, . . . , rn] where the
ri are not necessarily distinct elements of R. As an endofunctor of the category of sets,
list is a monad under concatentation, with the unit given by singleton lists. Algebras
for list are monoids in the category of sets.

2.3. Bag and lists combined. There is a natural transformation of monads list → bag

which counts up the multiplicities of elements in a list. Pulling back algebras along this
natural transformation of monads forgets the commutative structure on a commutative
monoid. There is also a natural transformation:

λ : list ◦ bag→ bag ◦ list
1

2 IORDAN GANEV

defined as taking a list of bags
[
∑ n(1)

r r, ∑ n(2)
r r, . . . , ∑ n(`)

r r
]

to the bag of lists where the

coefficient of a list [r1, . . . , r`] is the product ∏`
i=1 n(i)

ri , that is, the product over i = 1, . . . , `

of the number of times n(i)
ri that the element ri appears in the i-th coordinate of the list

of bags. In this notation, lists of length different from ` have coefficient zero.

Remark 2.1. There is no inverse map bag ◦ list→ list ◦ bag in general.

2.4. Semirings. The natural transformation λ induces a natural transformation:

M : list ◦ bag ◦ list ◦ bag −→ list ◦ bag

where one applies λ to the middle copy of bag ◦ list, followed by the monadic operation
on each of list and on bag. The natural transformation M defines a monad structure on
list ◦ bag, with unit given by singleton lists of singleton bags. Algebras for the monad
list ◦ bag are precisely semirings1. Examples of semirings include:

• Any ring is a semiring.

• There are two semiring structures on the set {0, 1}:

({0, 1} , OR , AND), ({0, 1} , XOR , AND),

where we list the ‘addition’ operation first and the ‘multiplication’ operation sec-
ond. The XOR version is isomorphic to the field with two elements, F2.

• If R is a semiring, then the set of n by n matrices Matn(R) with entries in R is also
a semiring.

• The semiring of tropical real numbers is defined as (R ∪ {∞}, min,+). Here the
‘addition’ operation is min with unit ∞, while the ‘multiplication’ operation is +
with unit 0. The distributive law is: a + min(b, c) = min(a + b, a + c). (Although
both operations are commutative, note that min(a, b + c) 6= min(a, b) + min(a, c)
in general.)

• Similary, we have the dual (or max) tropical real numbers: (R∪ {−∞}, max,+).

• The power set P(X) of a set is a semiring under intersection and union, which
are both commutative and play symmetric roles since both distributive laws hold:

A ∩ (B ∪ C) = (A ∪ B) ∩ (A ∪ C) A ∪ (B ∩ C) = (A ∩ B) ∪ (A ∩ C)

where A, B, and C are subsets of X. The unit of union is X and the unit of
intersection is the empty set ∅.

1Recall that a semiring is a ring without the assumption of additive inverses.

NOTES ON “GRAPH NEURAL NETWORKS ARE DYNAMIC PROGRAMMERS" 3

3. Pushforwards

3.1. Bag pushforward. Let f : Y → Z be a map between finite sets. Given a function
α : Y → R to a (possibly infinite) set R, we have the ‘bag pushforward’:

f∗α : Z → bag(R), z 7→ ∑
y∈ f−1(z)

α(y)

where we regard α(y) as an element of bag(R) via the canonical embedding R ↪→ bag(R).
Note that the coefficient of r in f∗α(z) is the cardinality of the intersection α−1(r)∩ f−1(z)
in Y. Writing [−,−] for function spaces, we have f∗ : [Y, R]→ [Z, bag(R)].

3.2. List pushforward. Let f : X → Y be a map between finite sets. Suppose (X,≤) is a
total order on X. Such an order induces a map:

ord : P(X)→ list(X)

that orders the elements of any subset of X. Given a function α : X → R to a (possibly
infinite) set R, we have the ‘list pushforward’:

f (list)∗ α : Y → list(R), y 7→ list(α) ◦ ord
(

f−1(y)
)

In other words, we apply α element-wise to the fiber over y, regarded as an ordered
list using the total order on X. Thus, we have a map f (list)∗ : [X, R] → [Y, list(R)].
Note that applying the forgetful map forget : list → bag allows us to recover the bag
pushforward from the list pushforward:

forgetR ◦ f (list)∗ α = f∗α

3.3. Integral transform. Now consider a diagram of finite sets:

W h←− X
f−→ Y

g−→ Z.

Call this diagram D, and fix a total order (X,≤) on X. Pulling back along h, applying
the list pushforward along f , and them applying the bag pushforward along g yields
the integral transform determined by D:

FD = g∗ ◦ f (list)∗ ◦ h∗ : [W, R] −→ [Z, bag ◦ list(R)]

Explicitly, given a function α : W → R and an element z ∈ Z, the coefficient of the list
[r1, . . . , rn] in FD(α)(z) is the number of times we have an equality:

[r1, . . . , rn] =
[
α ◦ h

(
x(y)1

)
, . . . , α ◦ h

(
x(y)n

)]
as y runs over the fiber g−1(z) over z and

[
x(y)1 , . . . , x(y)n

]
= ord(f−1(y)) is the ordering

of the fiber of f over y.

4 IORDAN GANEV

4. Directed graphs

Throughout these notes, we let G = (V, E) be a connected directed graph, and let s, t :
E → V be the source and target maps. We implicitly choose a total order on each of V
and E. This gives us a total order on any ordered coproduct of these sets. As far as the
author of these notes can tell, the details of this total order is not particularly relevant
for the topics at hand, except for the implementation of the algorithms in code. Unless
specified otherwise, we assume there are no loops (edges with s(e) = t(e)) and there
are no double edges (distinct edges e1 and e2 with s(e1) = s(e2) and t(e1) = t(e2)). We
will comment at various points on loosening these assumptions, or replacing them with
other assumptions.

5. Bellman–Ford

5.1. Algorithm. The Bellman–Ford algorithm takes a weighted directed graph with a
designated source vertex, and computes the lowest-weight paths from the source vertex
to each of the other vertices. Specifically, let w : E → R be the edge weights, which can
be negative2. Let v0 be the designated source vertex and initialize a distance function
d0 : V → R∪ {∞} as:

d0(v) =

{
0 if v = v0

∞ otherwise

We update the distance function by repeatedly running over all vertices and applying
the following rule at each vertex:

(5.1) dt+1(v) = min(dt(v) , min
e:u→v

(dt(u) + w(e)))

We implicitly choose a total order on the set of vertices in order to loop over all vertices.
Using the observation that any simple path has length at most |V| − 1, one can show
that the algorithm converges after at most |V| − 1 iterations over all the vertices. At a
given vertex v, we perform O(|t−1(v)|) operations; since ∑v |t−1(v)| = |E|, each iteration
across all vertices has time complexity O(|E|). We conclude that the time complexity of
the full algorithm is O(|V||E|).

5.2. Integral transform. One can realize the Bellman–Ford update rule in Equation 5.1
as an integral transform using the diagram below:

D =

V + E + E V + E

V + E V

〈id,s〉+id

id+〈id,id〉

〈id,t〉

2Dijkstra’s algorithm is faster than Bellman–Ford when all weights are non-negative.

NOTES ON “GRAPH NEURAL NETWORKS ARE DYNAMIC PROGRAMMERS" 5

To see this, first observe that a function α = 〈d, w〉 : V + E → R consists of a function
d : V → R on the vertices and a function w : E→ R on the edges. The integral transform
of α = 〈d, w〉, along this diagram is:

FD(d, w) : V → bag ◦ list(R)

v 7→ [d(v)] + ∑
e:u→v

[d(u), w(e)]

where the sum is over all vertices u with an edge to v.

Now we specialize our coefficients to the semiring of tropical real numbers R = (R ∪
{∞}, min,+). Let µ : bag ◦ list(R) → R be the map induced by the semiring structure,
so that we take sums of lists and minima of bags. Then we have:

µ ◦ FD(d, w)(v) = min(d(v) , min
e:u→v

(d(u) + w(e)))

for any function d : V → R. In this way, we recover the Bellman–Ford update rule of
Equation 5.1 as an integral transform.

5.3. Vertex costs. Suppose we have a cost c : V → R for visiting each vertex. The
variation of the Bellman–Ford algorithm that takes these costs into account has update
rule:

(5.2) dt+1(v) = min(dt(v) , c(v) + min
e:u→v

(dt(u) + w(e)))

We can realize this update rule via the following diagram:

D =

V + E + E + E V + E

V + V + E V

〈id,s〉+t+id

id+〈id,id,id〉

〈id,t〉

A function 〈d, c, w〉 : V + V + E → R consists of two functions d, c : V → R on the
vertices and a function w : E→ R on the edges. The integral transform of 〈d, c, w〉 along
this diagram is:

FD(d, c, w) : V → bag ◦ list(R)

v 7→ [d(v)] + ∑
e:u→v

[d(u), c(v), w(e)]

where the sum is over all vertices u with an edge to v. Taking R to be the tropical real
numbers and using the distributive law, we recover the update rule in Equation 5.2:

µ ◦ FD(d, c, w) = min(d(v) , c(v) + min
e:u→v

(d(u) + w(e)))

5.4. Variation. Consider the following diagram, which appears in the original paper
[DV22]:

6 IORDAN GANEV

D =

V + E + V + E V + E

V + V + E V

〈id,s〉+id

〈id,id〉

〈id,t〉

A function 〈d, b, w〉 : V + V + E → R consists of two functions d, b : V → R on the
vertices and a function w : E→ R on the edges. The integral transform of 〈d, b, w〉 along
this diagram is:

FD(d, b, w) : V → bag ◦ list(R)

v 7→ [d(v), b(v)] + ∑
e:u→v

[d(u), w(e)]

where the sum is over all vertices u with an edge to v. Taking R to be the tropical real
numbers, we arrive at an update rule:

µ ◦ FD(d, b, w)(v) = min(d(v) + b(v) , min
e:u→v

(d(u) + w(e)))

If b is constantly zero, this update rule matches the original one in Equation 5.1. The
interpretation of this update rule for b 6= 0 eludes the author of these notes.

6. Knapsack problem

Let X = {1, . . . , n} be a list of items, each of which has a value vi and a weight wi. The
knapsack problem seeks to select items with maximum total value subject to a constraint
on the total weight. More precisely, we seek a maximum of the function:

F : P(X)→ R, S 7→ ∑
i∈S

vi

subject to ∑i∈S wi ≤Wmax, where Wmax is the maximum weight capacity of the knapsack.
The usual dynamic programming approach involves setting M(i, r) to be the maximum
total value of a subset of {1, . . . , i} subject to the condition that the total weight of the
subset is less than or equal to r. In symbols, M(i, r) is equal to:

max
S∈P({1,...,i})

(
∑
j∈S

vj

)
subject to ∑

j∈S
wj ≤ r

Using the fact that the empty sum has value 0, we initialize the i = 0 case as:

M(0, r) =

{
−∞ if r < 0
0 if r ≥ 0

where the motivation for the choice of −∞ will become clear below. The recurrence is
given by:

(6.1) M(i, r) = max (M(i− 1, r) , M(i− 1, r− wi) + vi)

Indeed, given a subset of {1, . . . , i− 1}, we can either consider it as a subset of {1, . . . , i}
without changing the weight, or we add i to the subset. The second option requires

NOTES ON “GRAPH NEURAL NETWORKS ARE DYNAMIC PROGRAMMERS" 7

decreasing the total weight bound by wi and increasing the value by vi. The value of the
option with higher value becomes M(i, r).

To realize the recurrence in Equation 6.1 as an integral transform, consider the following
augment and skip maps:

aug : X×R→ X×R, (i, r) 7→ (i + 1 , r + wi+1)

skip : X×R→ X×R, (i, r) 7→ (i + 1 , r)

The first corresponds to augmenting a subset of {1, . . . , i} of weight ≤ r by the element
i + 1 at the cost of increasing the upper bound on the weight by wi+1. The second
corresponds to considering a subset of {1, . . . , i} of weight ≤ r as a subset of {1, . . . , i +
1}, thus leaving the weight unchanged. Now consider the following diagram:

D =

X×R + X×R + X×R X×R + X×R

X×R + X X×R

〈id,id〉+π1

〈skip,aug〉+id

〈id,id〉

where π1 : X ×R → X is the projection. Let R be a set and let α : X ×R → R and
β : X → R be functions. The integral transform of 〈α, β〉 : X ×R + X → R along this
diagram is:

FD(α, β) : X×R→ bag ◦ list(R)

(i, r) 7→ [α(i− 1, r)] + [α(i− 1, r− wi) , β(i)]

Finally, let R = (R ∪ {−∞}, max,+) be the semiring of (max) tropical numbers, and let
µ : bag ◦ list(R) → R be the map induced by the semiring structure, so that we take
sums of lists and maxima of bags. Observe that the initialization M(0,−) of M is defined
in R. Taking V : X → R to be the value function i 7→ vi, we have:

µ ◦ FD(M,V)(i, r) = max (M(i, r) , M(i− 1, r− wi) + vi)

In this way, we recover the Knapsack recurrence from Equation 6.1 as an integral trans-
form.

7. Graph neural networks: easy version

Consider the following diagram:

D =

V + E V + E

V V

〈id,s〉

id

〈id,t〉

Note that this diagram is obtained from one appearing in relation to the Bellman–Ford
algorithm by dropping an extra copy of E on the left side; this reflects the fact that (in

8 IORDAN GANEV

this easy version at least) we perform graph convolution on unweighted graphs. The
integral transform of a function α = αV : V → R, along this new diagram is given by:

FD(α) : V → bag ◦ list(R)

v 7→ [α(v)] + ∑
u→v

[α(u)]

where the sum is over all vertices u with an edge to v. Since all lists are length one, the
integral transform factors through bag(R).

Set R = Rn and S = Rm to be finite-dimensional vector spaces, and let K : Rn → Rm be
a linear map, i.e., a matrix. Recall that any vector space is a commutative group under
addition, so we have a sum operation sum : bag(Rm) → Rm. Applying bag(K) to FD(α)
and taking sums we obtain:

(7.1) sum ◦ bag(K) ◦ FD(α)(v) = K(α(v)) + ∑
u→v

K(α(u)) ∈ Rm

To be clear, in this last expression, the sum is not a formal sum, but an actual sum in the
vector space Rm.

Remark 7.1. If one prefers the convolution in Equation 7.1 not to include α(v), then the

simpler diagram V s← E id→ E t→ V works.

Remark 7.2. Recall that we assume by default that G has no edge loops and no double
edges. This guarantees that Equation 7.1 not to include any α(u) more than once. Also
recall that a graph G is reflexive if for every vertex there is an edge e with s(e) = t(e) = v.
This is the extreme opposite of the no-edge-loop assumption. If this is the case, then one

can use the simpler diagram V s← E id→ E t→ V to recover Equation 7.1.

8. Graph convolution: message passing

8.1. Message passing. We now consider a more sophisticated version of graph convo-
lution. Fix the following two functions:

• Let ψ : R× R→ R be the message function.
• Let φ : R× R→ R be the read-out function.
• Let ⊕ : R× R→ R be a commutative monoid structure on R, with unit 0 ∈ R.

The message-passing transformation of f : V → R using φ and ψ is given by:

Γφ,ψ(f) : V → R, v 7→ ψ

(
f (v),

⊕
u→v

φ (f (u), f (v))

)
Remark 8.1. In practice, we will take R = Rk as a commutative group under addition.

In order to present message passing as an integral transform, we require two construc-
tions using the functions φ and ψ. We provide these constructions in a somewhat general
setting before returning to φ and ψ.

NOTES ON “GRAPH NEURAL NETWORKS ARE DYNAMIC PROGRAMMERS" 9

8.2. Binary operations. Let κ : R2 → R be any function. Select a distinguished element3

p ∈ R. For i = 0, 1, . . . , we define a map:

κi : Ri → R

as follows. The map κ0 takes the single element of R0 = 1 to p ∈ R. The map κ1 is
the identity. For i ≥ 2, we have κi([r1, r2, . . .]) = κ(a1, κi−1([r2, . . .])). Note that κ2 = κ.
Taking the coproduct of the maps κi we obtain a map:

κ̃ : list(R)→
∞

ä
i=0

R

Note that we can compose with the fold map ä∞
i=0 R→ R to obtain:

fold ◦ κ̃ : list(R)→ R

We can also apply bag(κ̃), which turns bags of lists into lists of bags:

bag(κ̃) : bag ◦ list(R)→ bag

(
∞

ä
i=0

R

)
'

∞

∏
i=0

bag(R) = list ◦ bag(R)

Returning to the functions φ, ψ : R2 → R, we can combine them to produce a map:

Aφ,ψ : bag ◦ list(R)→ R

defined as the following composition, which also invokes the commutative monoid
structure ⊕ on R:

bag ◦ list(R)
bag(φ̃)−→ list ◦ bag(R)

list(⊕)−→ list(R)
fold◦ψ̃−→ R.

8.3. The integral transform. Consider the following diagram:

D =

V + E + E V + E

V V

〈id,s,t〉

id+〈id,id〉

〈id,t〉

Note that this diagram is obtained from the diagram relevant to the Bellman–Ford al-
gorithm by composing the left leg with 〈id, t〉 : V + E → V. The integral transform of
α : V → R along D is:

FD(α) : V → bag ◦ list(R)

v 7→ [α(v)] + ∑
u→v

[α(u), α(v)]

where the sum is over all vertices u with an edge to v

Lemma 8.2. Message passing is the composition of the integral transform along D with the map
Aφ,ψ:

Aφ,ψ ◦ FD = Γφ,ψ

3In practice, R will have a zero element under a commutative operation and we will take p = 0.

10 IORDAN GANEV

Sketch of proof. Applying bag(φ̃) to FD(α), we obtain

[α(v), ∑
u→v

φ(α(u), α(v))] ∈ list ◦ bag(R).

Applying list(⊕), we obtain

[α(v),
⊕
u→v

φ(α(u), α(v))] ∈ list(R).

Finally, applying fold ◦ ψ̃, we obtain the desired result:

ψ

(
α(v),

⊕
u→v

φ(α(u), α(v))

)
∈ R.

�

9. Additional integral transforms

In this section, we collect a number of further diagrams from [DV22] compute the corre-
sponding integral transforms. We continue to work with a directed graph G = (V, E).

9.1. Consider the following diagram:

D =

E + E + E + E E

1 + V + E V

1+〈s,t〉+id

〈id,id,id,id〉

t

A function α = 〈α1, αV , αE〉 : 1 + V + E → R, consists of a constant α1, a function
αV : V → R on the vertices, and a function αE : V → R on the edges. The integral
transform of α along this diagram is:

FD(α) : V → bag ◦ list(R)

v 7→ ∑
e:u→v

[α1 , αV(u) , αV(v) , αE(e)]

where the sum is over all incoming edges e at v.

9.2. Consider the following diagram:

D =

4V2 + 7V3 V2 + V3

1 + V + V2 V + V2

fold

π2+π23

NOTES ON “GRAPH NEURAL NETWORKS ARE DYNAMIC PROGRAMMERS" 11

where the left vertical map is induced by the combination of the unique map V2 → 1,
the two projection maps V2 → V, the identity map V2 → V2, the unique map V3 → 1,
the three projection maps V3 → V, and the three projection maps V3 → V2. The
horizontal map is the obvious fold map built out of the identity maps. The right vertical
map is projection onto the second coordinate V2 → V, combined with projection onto
the second two coordinates V3 → V2. Observe that this diagram is obtained from the
previous one by replacing the edge set E by V2 (with the two projections π1 and π2
corresponding to the source and target maps s and t, respectively), and adding copies
of V3 and V2. The integral transform of α = 〈α1, αV , αV2〉 : 1 + V + V2 → R, along this
diagram is:

FD(α) : V + V2 → bag ◦ list(R)

v 7→ ∑
u∈V

[α1 , αV(u) , αV(v) , αV2(u, v)]

(a, b) 7→ ∑
u∈V

[α1 , αV(u) , αV(a) , αV(b) , αV2(u, a) , αV2(u, b) , αV2(a, b)]

References

[DV22] Andrew J. Dudzik and Petar Veličković, Graph Neural Networks are Dynamic Programmers, Advances
in Neural Information Processing Systems 35 (December 2022), 20635–20647.

	1. Introduction
	2. Bags and lists
	2.1. Bags
	2.2. Lists
	2.3. Bag and lists combined
	2.4. Semirings

	3. Pushforwards
	3.1. Bag pushforward
	3.2. List pushforward
	3.3. Integral transform

	4. Directed graphs
	5. Bellman–Ford
	5.1. Algorithm
	5.2. Integral transform
	5.3. Vertex costs
	5.4. Variation

	6. Knapsack problem
	7. Graph neural networks: easy version
	8. Graph convolution: message passing
	8.1. Message passing
	8.2. Binary operations
	8.3. The integral transform

	9. Additional integral transforms
	9.1.
	9.2.

	References

