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1. Introduction

These expository notes provide an approach to motivating the definition of the real
log canonical threshold. Specifically, we first define the flatness of a singularity of a
real analytic variety, and then set the real log canonical threshold to be the inverse of
the flatness. While the real log canonical threshold is well-established in the algebraic
geometry and singular learning theory literature, the author finds that flatness is more
intuitive and easier to motivate from elementary principles. The main references are
[Wat09, Chapters 2 and 3] and [Car23]. We assume some familiarity with algebraic and
differential geometry, and with analytic functions.

1.1. Flatness of monomials. We begin with the elementary geometric observation that,
if k < ℓ are positive integers, then the graph of the function xℓ is ”flatter” at the origin
than that of xk. Formally, this means that the preimage of any neighborhood of the origin
under xk is contained in its preimage under xℓ. We set the flatness of a xk at the origin
to be k:

Flatness
(

xk, 0
)

:= k

Indeed, as k increases, the flatness increases1. Similarly, for a monomial xk1
1 · · · xkd

d , the
flattest direction away from the singularity at the origin is determined by the maximum
exponent. We set:

Flatness
(

xk1
1 · · · xkd

d , 0
)

:= max
i

(ki)

1This definition makes sense for functions of the form xr for r a nonzero real number; however, xr is
not analytic at the origin unless r is a positive integer.

1
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What about functions that are not monomials? The functions that are closest to being
monomials are the ones with normal crossings at the origin. Recall that an analytic
function f defined on an open neighborhood of Rd is said to have normal crossings at the
origin if, on a suitably small neighborhood of the origin, f can be written of the form2:

f (x) = a(x)xk1
1 · · · xkd

d

for an analytic function a with a(0) ̸= 0 and nonnegative integers k1, . . . , kd. In this case,
we set the flatness of f at the origin to be the flatness of the monomial part:

Flatness( f , 0) := Flatness
(

xk1
1 · · · xkd

d , 0
)
= max

i
(ki)

If d = 1, any real analytic function of one variable has normal crossings at the origin
[KP02, Section 1.2]. However, not every function of d > 1 variables has normal crossings
(consider the cuspidal cubic f (x, y) = y2 + x3).

1.2. Outline. A primary goal of these notes is to illustrate how one defines and com-
putes the flatness of functions that do not have normal crossings. The definition relies on
a deep theorem of Hironaka on resolutions of singularities, which we discuss in Section
3. On the other hand, actually computing flatness usually involves performing blowups;
we provide background on blowups in Section 2. Blowups have the property that they
preserve normal crossings; the precise interaction provides motivation for the general
definition of flatness (which is why the section on blowups precedes the section on res-
olutions). We postpone a detailed discussion of examples until Section 4. We present a
different, equivalent, definition of flatness in Section 5; this definition amounts to tak-
ing the leading exponent of the volume of the preimage f−1([−ϵ, ϵ]) as a function of ϵ.
Finally, in Appendix A, we include a general discussion on the geometry of successive
blowups.

1.3. Flatness in general. To give a sense of the general definition of flatness, the Hiron-
aka’s theorem asserts that, given a real analytic function f defined on an open neigh-
borhood of the origin in Rd, there is (roughly speaking) a blowup map g : M → Rd

such the pullback of f to any coordinate chart has normal crossings at any point in the
fiber over the origin. Then the flatness of f is defined as the maximum of the flatness
of its normal crossings pullbacks, divided by a cost coming from the determinant of the
Jacobian of the blowup map g.

The map g is not unique, due in part to the fact that the pullback of a function with
normal crossings under a blowup again has normal crossings. Therefore, the cost is
defined in a way not to depend on the particular choice of blowup. In particular, if
f happens to be a monomial, then its flatness computed directly (i.e. the maximum
exponent) will match the flatness computed via any blowup.

2This definition usually includes the assumption that f (0) = 0; this does not seem necessary for our
purposes. If f (0) ̸= 0, then one can take ki = 0 for all i, and the flatness is 0.
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We remark that the approach outlined above defines the flatness at the origin; for any
other point x∗ ∈ Rd, we set:

Flatness ( f , x∗) := Flatness (x 7→ f (x + x∗), 0)

Moreover, the global flatness of f is the maximum flatness over all points in the domain
of f :

Flatness( f ) := max
x∗∈dom( f )

Flatness ( f , x∗)

In fact, since the flatness is zero at points where f (x∗) ̸= 0, we can take the maximum
only over f−1(0), as long as this set is nonempty. Finally, the real log canonical threshold
(local or global) is the inverse of the flatness:

RLCT( f , p) :=
1

Flatness( f , p)
RLCT( f ) := min

p∈ f−1(0)
RLCT( f , p)

If the flatness at a point is zero, then the real log canonical threshold is set to be +∞ at
that point. We now turn our attention to blowups, before returning to flatness and the
real log canonical threshold in Section 3.

2. Blowups

In this section, we define blowups precisely, and collect results which will be relevant in
later sections. Recall that projective space Pd−1 is the moduli space of lines through the
origin in Rd.

2.1. Incidence relation. The blowup of the origin in Rd, for d ≥ 2, is defined as the
following space via an incidence relation:

B{0}(R
d) =

{
(x, ℓ) ∈ Rd × Pd−1 | x ∈ ℓ

}
In other words, we consider the set of all pairs (x, ℓ) of a point x in Rd and a line ℓ
through the origin in Rd such that the point lies on the line. We have the two projections:

B{0}(R
d)

Rd Pd−1

µ p

The fiber of µ of any nonzero x ∈ Rd is a single point since there is a unique line passing
through the origin and x. Meanwhile, the fiber over 0 ∈ Rd is a copy of Pd−1, since
the latter parametrizes lines through the origin. Thus, as a family over Rd, the blow-up
is a bijection over the complement of the origin and a copy of projective space over the
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origin:

Pd−1 B{0}(R
d) Rd \ {0}

{0} Rd Rd \ {0}

µ ≃

On the other hand, the projection p : B{0}(R
d) → Pd−1 is a fibration with fiber R.

Indeed, the fiber over any line is the set of points on that line, so the blow-up is the total
space of the tautological bundle over Pd−1. In the case d = 2, this total space, and hence
the blow up itself, is topologically a Möbius strip. The zero section is the fiber µ−1(0).
This description shows that the blow up can be given the structure of either a smooth
manifold, a real analytic manifold, or a smooth real algebraic variety. For our purposes,
we mostly focus on the real analytic structure, but comment on the other ones where
relevant.

2.2. Equations. To give another description of the blow up, we first note that two points
x, y ∈ Rd lie on the same line through the origin if and only if xiyj = xjyi for all
1 ≤ i, j ≤ d. (The proof of this fact is elementary.) Hence, using homogenous coordinates
on Pd−1, we obtain:

B{0}(R
d) =

{
(x, ℓ) ∈ Rd × Pd−1 | xiℓj = xjℓi for 1 ≤ i, j ≤ d

}
For example, in the case d = 2, we have:

B{0}(R
2) =

{
(x, ℓ) ∈ R2 × P1 | det

[
x1 x2
ℓ1 ℓ2

]
= 0

}
2.3. Closure. We illustrate a realization of the blow up as a closure. Consider the map

a : Rd \ {0} → Rd × Pd−1, x 7→ (x, [x])

In other words, we include into the first factor and project to projective space in the
second factor. The image consists of pairs (x, ℓ) of a point in Rd \ {0} and the line in Rd

containing that point.

Lemma 2.1. The Euclidean closure of the image of a is precisely the blow-up B{0}(R
2).

Sketch of proof. The inclusion of the closure in B{0}(R
d) is immediate. For the opposite

inclusion, we show that (0, ℓ) belongs to the closure of the image of a for any ℓ = [ℓ1 :
· · · : ℓd] ∈ Pd−1. Indeed, the image under a of the sequence n 7→

(
ℓ1
n , . . . , ℓd

n

)
in Rd \ {0},

for n = 1, 2, . . . , limits to (0, ℓ). □

We have used the Euclidean topology when speaking of the closure. However, a is map
of varieties, and the closure of its image in the Zariski topology is also B{0}(R

2). This
follows from the following facts: (1) the Euclidean topology is finer than the Zariski
topology, so the Zariski closure contains the Euclidean closure and (2) B{0}(R

2) is closed
in the Zariski topology which means the former is contained in the Zariski closure.
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2.4. Coordinate charts. To perform calculations on the blow up, it will be convenient to
introduce a collection of coordinate charts. For i = 1, . . . , d, recall the canonical open sets
of Pd−1 given by:

Pd−1[i] =
{
ℓ = [ℓ1 : · · · : ℓ2] ∈ Pd−1 | ℓi ̸= 0

}
Set Ui to be the preimage of Pd−1[i] under the map p:

Ui =
{
(x, ℓ) ∈ Rd × Pd−1 | ℓi ̸= 0 , xjℓk = xkℓj for j, k = 1, . . . d

}
=

{
(x, ℓ) ∈ Rd × Pd−1 | ℓi ̸= 0 , xj = xi

ℓj

ℓi
for j = 1, . . . d

}
We see that there are coordinate charts:

ψi : Rd → Ui, (µ ◦ ψi(z))j =

{
zi if i = j
zizj if i ̸= j

p ◦ ψi(z) = [z1 : · · · : zi−1 : 1 : zi+1 : · · · : zd]

where we use the fact that a map to Ui is the same as a pair of maps, one to Rd and
another to Pd−1[i], such that the incidence condition is satisfied, which is the case: µ ◦
ψi(z) ∈ p ◦ ψi(z). The inverse of ψi is given by:

ϕi : Ui → Rd, ϕi(x, ℓ)j =

{
xi if i = j
ℓj
ℓi

if i ̸= j

To write down the transition functions, first observe that the image of the intersection
Ui ∩ Uj under ϕi is given by the complement of the zj coordinate hyperplane:

ϕi(Ui ∩ Uj) = {z ∈ Rd | zj ̸= 0}
The transition functions are given by:

αij : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj), αij(z)k =


1
zj

if k = i

zizj if k = j
zk
zj

otherwise

We conclude that the Ui form an atlas on B{0}(R
d). We will refer to the Ui as the canonical

open sets coving the blowup B{0}(R
d).

Since Ui is defined as p−1(Pd−1[i]), its image under p is Pd−1[i]. On the other hand, the
image of Ui under µ is the set of points where the coordinate xi being zero implies that
all other coordinates are zero:

µ(Ui) = {x ∈ Rd | xi ̸= 0} ∪ {0}.

Equivalently, the image of Ui under µ is the complement of the punctured xi-axis in Rd.

Remark 2.2. For future reference, we note that the determinant of the Jacobian of µ ◦ ψi
at z is given by det (Jacz(µ ◦ ψi)) = zd−1

i . The verification of this claim is an exercise; one
can reduce to the case i = 1.
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Remark 2.3. Later in these notes we will consider pulling back functions from Rd to the
coordinate charts Ui via µ ◦ ψi. For example, if f (x) = xk1

1 · · · xkd
d is a monomial, then,

f ◦ µ ◦ ψi(z) = zk1
1 · · · zki−1

i−1

(
z

∑j kj
i

)
zki+1

i+1 · · · zkd
d

so that the exponent of zi is the sum of the original exponents, while all other exponents
remain unchanged.

Example 2.4. When d = 2, we have the open sets:

U1 =

{
(x, ℓ) ∈ R2 × P1 | ℓ1 ̸= 0 , x2 = x1

ℓ2

ℓ1

}
U2 =

{
(x, ℓ) ∈ R2 × P1 | ℓ2 ̸= 0 , x1 = x2

ℓ1

ℓ2

}
with coordinates given by:

ϕ1(x, ℓ) =
(

x1,
ℓ2

ℓ1

)
ϕ2(x, ℓ) =

(
ℓ1

ℓ2
, x2

)
ψ1(z) = ((z1, z1z2) , [1 : z2]) ψ2(z) = ((z1z2, z2) , [z1 : 1])

and transition maps:

α12 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2), (z1, z2) 7→
(

1
z2

, z1z2

)
α21 : ϕ2(U1 ∩ U2) → ϕ1(U1 ∩ U2), (y1, y2) 7→

(
y1y2,

1
y1

)
The Jacobian of µ ◦ ϕ1 at z is easily seen to be

[
1 0
z2 z1

]
, with determinant z1; similarly,

the determinant of the Jacobian of µ ◦ ϕ2 is z2. The pullbacks of a monomial xk1
1 xk2

2 to U1

and U2 are, respectively, xk1+k2
1 xk2

2 and to xk1
1 xk1+k2

2 .

2.5. Blowups and normal crossings. An important property of blowups is that they
preserve normal crossings. Specifically, suppose f is a real analytic function defined3 on
Rd, and let µ : B{0}(R

d) → Rd be the blowup at the origin. For any i = 1, . . . , d, the
pullback of f under µ ◦ ψi is a function Rd → R.

Proposition 2.5. Let f be as above. If f has normal crossings at the origin, then, for i = 1, . . . , d,
the pullback of f under µ ◦ ψi has normal crossings at any point in (µ ◦ ψi)

−1(0).

Sketch of proof. First, observe that the fiber (µ ◦ ψi)
−1(0) is equal to {zi = 0} ⊂ Rd. Let

p = (λ1, . . . , λi−1, 0, λi+1, . . . , λd) be a point in this fiber. Let τp : Rd → Rd be translation
by p, so that τp(z) = z + p. Then:

µ ◦ ψi ◦ τp(z) =

{
zi if j = i
zi(zj + λj) if j ̸= i

3The results below hold when f is defined only on a neighborhood of the origin in Rd.
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The proposition follows from showing that the pullback of f under µ ◦ψi ◦ τp has normal
crossings at the origin. Since f itself has normal crossings at the origin, we can write:

f (x) = a(x)xk1
1 · · · xkd

d

for non-negative integers k j and a real analytic function a such that a(0) ̸= 0. Therefore,
the pullback of f under µ ◦ ψi, shifted by p, is given by:

f ◦ µ ◦ ψi ◦ τp(z) = a(µ ◦ ψi ◦ τp(z))z
∑j kj
i ∏

j ̸=i
(zj + λj)

kj

Set:
ã(z) = a(µ ◦ ψi ◦ τp(z)) ∏

j:λj ̸=0
(zj + λj)

kj

Then ã(0) = a(0)∏j:λj ̸=0 λ
kj
j ̸= 0, and

(2.1) f ◦ µ ◦ ψi ◦ τp(z) = ã(z)z
∑j kj
i ∏

j ̸=i,λj=0
z

kj
j

The result follows. □

In Section 1.1, we defined the flatness of an analytic function with normal crossings.
Since normal crossings are preserved by blowups, we can compare the flatness of a
function with normal crossings to the flatness of its pullback under a blowup. More
precisely, suppose f (x) = a(x)xk1

1 · · · xkd
d has normal crossings at the origin, where the

k j are non-negative integers and a(0) ̸= 0. Hence, the flatness of f at the origin is the
maximum of the k j. Now, fix i ∈ {1, . . . , d}, and let p = (λ1, . . . , λi−1, 0, λi+1, . . . , λd) be a
point in the fiber (µ ◦ ψi)

−1(0). Let τp : Rd → Rd be translation by p. Then we see from
Equation 2.1 that the flatness of the pullback is the sum of the exponents:

Flatness( f ◦ µ ◦ ψi, p) = Flatness( f ◦ µ ◦ ψi ◦ τp, 0)

= max

(
∑

j
k j , max

j ̸=i,λj=0
k j

)
= ∑

j
k j

This mismatch can be corrected by incorporating a cost of blowing up. Specifically, in-
stead of comparing ∑j k j to each of the ki (the former will always be larger), we compare

the average ∑j kj
d to the other exponents. We set the flatness of f at the origin relative to

the coordinate chart µ ◦ ψi ◦ τp of the blowup to be:

(2.2) Flatness
(

f , 0 | µ ◦ ψi ◦ τp
)

:= max

(
∑j k j

d
, max

j ̸=i,λj=0
k j

)
The point in (µ ◦ ψi)

−1(0) with maximum flatness is the origin:

Flatness ( f , 0 | µ ◦ ψi) = max
(

∑j k j

d
, max

j ̸=i
k j

)
=

{
∑j kj

d if maxj k j = ki

maxj
(
k j
)

otherwise
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We recover the flatness of f at the origin by taking the maximum over i = 1, . . . , d:

Flatness( f , 0) = max
i

(Flatness( f , 0 | µ ◦ ψi, )) = max
j

(
k j
)

In Section 3.2 below, we generalize this procedure beyond simple blowups.

2.6. Blowups of higher-dimensional submanifolds. We generalize from blowing up
the origin in Rd to blowing up the submanifold of Rn given by the vanishing of d coor-
dinates. Here n ≥ 2 is an integer, and we set 2 ≤ d ≤ n. Consider the codimension d
submanifold of Rn given by:

Vd = {0} × Rn−d = {x ∈ Rn | x1 = x2 = · · · = xd = 0}

We recover the previous discussion with d = n. The blow up of Vd in Rn is defined as:

BVd(R
n) = B{0}(R

d)× Rn−d

or, equivalently, via an incidence relation BVd(R
n) = {(x, ℓ) ∈ Rn × Pd−1 | πd(x) ∈ ℓ},

where πd : Rn → Rd is the projection onto the first d coordinates and we regard Pd−1 as
parameterizing lines through the origin in Rd. We have projections:

BVd(R
n)

Rn Pd−1

µ p

The fiber of µ over x ∈ Rn \ Vd is a single point, while the fiber of µ over x ∈ Vd is a
copy of Pd−1. Thus, we have ”blown up” each point of the submanifold Vd into a copy
of projective space while keeping the rest of Rn unchanged:

Vd × Pd−1 BVd(R
n) Rn \ Vd

Vd Rn Rn \ Vd

π1 µ ≃

The projection p : BVd(R
n) → Pd−1 is a fibration with fiber R × Rn−d; the blow up can

be identified with the total space of the product of the tautological bundle and the trivial
(n − d)-dimensional bundle. We also have the map

a : Rn \ Vd → Rn × Pd−1, x 7→ (x, [πd(x)])

Since Rn \ Vd = (Rd \ {0})× Rn−d, the arguments from the case n = d can be used to
show that the closure of a is BVd(R

n).

In the above discussion, we have blown up the subvariety Vd or Rn. However, the
construction works just as well when restricting to an open subset W of the origin in Rn

and blowing up Vd ∩ W. We write BVd∩W(W), or simply BVd(W), for this blow up.



NOTES ON FLATNESS AND THE REAL LOG CANONICAL THRESHOLD 9

3. Resolutions

We are now ready to define the flatness of functions that do not have normal crossings
at the origin using a theorem of Hironaka.

3.1. Hironaka theorem. To state the theorem precisely, let M be a d-dimensional real
analytic manifold. A coordinate chart at p ∈ M is a pair (V, ψ) where V is an open
neighborhood of the origin in Rd and ψ is an injective real analytic map V ↪→ M with
ψ(0) = p. We state a simplified version of the theorem of Hironaka, similar to the version
given in [Wat09].

Theorem 3.1 (Hironaka). Let f be a non-constant real analytic function defined on a nonempty
open neighborhood of the origin in Rd. Then there exists:

• a d-dimensional real analytic manifold M, and
• a proper real analytic map g : M → W, where W ⊆ Rd is an open neighborhood of the

origin contained in the domain of f ,

such that:

• the map g restricts to an analytic isomorphism M\M0 → W \ {0}, where M0 =
g−1(0), and

• for every p ∈ M0, there is a coordinate chart (V, ψ) at p such that:

f ◦ g ◦ ψ(v) = a(v)vk1
1 · · · vkd

d

det (Jacv (g ◦ ψ)) = b(v)vh1
1 · · · vhd

d

for all v ∈ V, where a and b are real analytic functions with a(0) ̸= 0 and b(0) ̸= 0, and
the ki and hi are nonnegative integers.

We note that g ◦ψ is a map from the open set V ⊆ Rd to the open set W ⊆ Rd, and hence
its Jacobian at any v ∈ V is a d by d matrix; we take the determinant of this matrix. This
procedure gives a function V → R taking v to det (Jacv (g ◦ ψ)).

3.2. Flatness in general. We now use the theorem above to define the flatness at the
origin. We adopt all notation from the theorem. Given p ∈ M0 and a coordinate chart
(V, ψ) at p satisfying the conditions of the theorem, we set:

(3.1) Flatness ( f , 0 | g ◦ ψ) = max
1≤i≤n

(
ki

hi + 1

)
In other words, the flatness of f at the origin relative to the map g ◦ ψ is defined as the
flatness of the pullback f ◦ g ◦ ψ, with an ”averaging” cost in the denominator coming
from the Jacobian of g ◦ ψ.

Remark 3.2. Equation 3.1 is a direct generalization of the case when g = µ is a blowup
map and f has normal crossings, see Equation 2.2. In that case, for any p in the fiber of
µ, we have p = ψi(z) for some i = 1, . . . , d and z ∈ Rd; we can take the coordinate chart
at p given by µ ◦ ψi ◦ τz. Recall from Remark 2.2 that det(Jacv(µ ◦ ψi ◦ τz)) = vd−1

i , so that
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hi = d − 1 and hj = 0 for j ̸= i. On the other hand, the i-th normal crossing exponent
of the pullback of f is the sum of the normal crossing exponents of f , while the other
normal crossing exponents are unchanged.

It is a fact that different coordinate charts at p (satisfying the conditions of the theorem)
give the same flatness, so we select one, denoted (V, ψ), and set:

Flatness ( f , 0 | p) = Flatness ( f , 0 | g ◦ ψ)

Next, we set the flatness of f at x to be the maximum flatness of points p ∈ M0:

Flatness ( f , 0) = max
p∈M0

Flatness ( f , 0 | p)

For any other point x∗ in the domain of f , we define the flatness by translating the
function so that the point of interest is the origin:

Flatness( f , x∗) := Flatness(x 7→ f (x + x∗), 0)

Finally, the (global) flatness of f is the maximum of the flatness at all points in the
domain of f :

Flatness( f ) = max
x∗∈dom( f )

Flatness( f , x∗)

Since the flatness is zero when f (x∗) ̸= 0, we can take the maximum only over f−1(0),
as long as the latter set is nonempty.

Example 3.3. Suppose functions f , g : R → R satisfy f ◦ g(x) = xk for a nonnegative
integer k, g′(x) = xh for a nonnegative integer h, and g(0) = 0. Then, up to a constant,
g(x) = xh+1 so that

xk = f ◦ g(x) = f
(

xh+1
)

.

It follows that, up to a constant, f (x) = x
k

h+1 , so that the flatness of f is k
h+1 . A warning

is in order: the function xr is not analytic at zero unless r is a non-negative integer.

Definition 3.4. Let f be a real analytic function defined on an open neighborhood of the
origin in Rd. For any x∗ in the domain of f , the real log canonical threshold is defined
as the inverse of the flatness:

RLCT( f , x∗) =
1

Flatness( f , x∗)

If the flatness is zero, the real log canonical threshold defined as +∞.

4. Examples

We present a number of examples illustrating techniques for computing the flatness (or,
equivalently, the real log canonical threshold).
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4.1. Tree notation. This section can be skipped on first reading and referenced when
the reader arrives at the tree diagrams below. The examples below involve pulling back
functions along blowups and along diffeomorphisms, and can be summarized with a
(directed, rooted) tree. In the trees below, each vertex v is a labeled with a function
Kv : Rd → R. Each directed edge corresponds to a transformation Rd → Rd; the function
at the target of the edge is the pullback of the function at the source. In symbols:

Kt(e) = Ks(e) ◦ ϕe

where s(e) and t(e) are the source and target of the edge e, respectively. The number of
emanating edges from a vertex carries various information:

• A single emanating edge e indicates that the transformation ϕe is a diffeomor-
phism.

• A count of n > 1 emanating edges indicates a blow up along a subset of n coor-
dinate axes xi1 = xi2 = · · · = xin = 0, where i1 < i2 < · · · < in and ij ∈ {1, . . . , d}.
The j-th edge corresponds to the transformation:

(x1, . . . , xd)k =


xij k = ij

xij xk if k = ij′ for some j′ ∈ {1, . . . , n} \ {j}
xk otherwise

• A leaf has no emanating edges. There is a unique path from the root to the leaf ℓ;
composing the maps along the path in reverse order, we obtain a transformation
ϕℓ of Rd. The function Kℓ has normal crossings at every point in the relevant fiber
of ϕℓ.

The notation and conventions will become clearer by examining examples.

4.2. Squared norm. Consider the function f (x, y) = x2 + y2, whose vanishing set is the
origin. We blow up at the origin and pull back f to the two canonical coordinate charts
to obtain:

( f ◦ µ ◦ ψ1)(x, y) = x2(1 + y2) and ( f ◦ µ ◦ ψ2)(x, y) = y2(x2 + 1)

As the functions 1+ x2 and 1+ y2 are non-vanishing, these pullbacks have normal cross-
ings. The Jacobian determinants are:

det
(

Jac(x,y)(µ ◦ ψ1)
)
= x and det

(
Jac(x,y)(µ ◦ ψ2)

)
= y

We conclude that the flatness is:

Flatness(x2 + y2, 0) = max
(

2
1 + 1

,
2

1 + 1

)
= 1
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The real log canonical threshold is also equal to 1. The tree diagram (as per Section 4.1)
is given by:

x2 + y2

x2(1 + y2) y2(x2 + 1)

In this simple example, there are two edges e1 and e2, and two leaves ℓ1 and ℓ2, enumer-
ated from left to right. The edge ei corresponds to the transformation µ ◦ ψi, which is
the restriction of the blowup at the origin to the i-th canonical coordinate chart. In the
notation from Section 4.1:

ϕℓ1 = ϕe1(x, y) = (x, xy) and ϕℓ2 = ϕe2(x, y) = (xy, y)

In notation similar to that of [Wat09, Example 3.16], these can be summarized as:

x = x1 = x2y2

y = x1y1 = y2

4.3. Cuspidal cubic. Consider the function f (x, y) = x3 + y2, whose vanishing set is
a cuspidal cubic. There is a singularity at the origin (both partial derivatives of the
irreducible polynomial f vanish there). We resolve this singularity to normal crossings
by blowing up three times. After the first blow up at the origin, the pullbacks of f to U1
and U2 are given by:

x3 + x2y2 and x3y3 + y2 = y2(x3y + 1)

We have achieved normal crossings on U2; indeed, the fiber of the map U2 → R2 over
the origin is {y = 0}, so the non-monomial factor x3y + 1 is constant at 1 on the fiber.
Meanwhile, we blow up U1 at the origin. The pullbacks to U11 and U12 are given by

x3 + x4y2 = x3(1 + xy2) and x3y3 + x2y4

We have achieved normal crossings on U11; indeed, the fiber of the map U11 → R2 over
the origin is {x = 0}, so the non-monomial factor 1 + xy2 is constant at 1 on the fiber.
Meanwhile, we blow up U12 at the origin. The pullbacks to U121 and U122 are given by

x6y3 + x6y4 = x6y3(1 + y) and x3y6 + x2y6 = x2y6(x + 1).

These are the pullbacks of the original function f under (x, y) 7→ (x2y, x3y2) and (x, y) 7→
(xy2, xy3), respectively. The fiber over the origin in both cases is xy = 0. We claim that
x6y3(1 + y) has normal crossings on {xy = 0}. The only points to consider are those in
the intersection of {xy = 0} and {x6y3(1 + y) = 0}. There are four cases:

• At (0, 0), we take a(x, y) = 1 + y.
• At (0,−1), we take a(x, y) = y3.
• At (0, λ), for λ ̸= 0,−1, we take a(x, y) = y3(1 + y).
• At (λ, 0), for λ ̸= 0, we take a(x, y) = x6(y + 1).
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A similar argument shows that x2y6(x + 1) has normal crossings on the fiber {xy =
0}. Thus, we have used blowups to resolve to normal crossings. We summarize the
calculations with a tree:

x3 + y2

x3 + x2y2 y2(x3y + 1)

x3(1 + xy2) x3y3 + x2y4

x6y3(1 + y) x2y6(x + 1)

In this example, the left arrow emanating form a vertex corresponds to the transforma-
tion (x, y) 7→ (x, xy), which is the restriction of the blowup at the origin to the first
canonical coordinate chart. The right arrow corresponds to (x, y) 7→ (xy, y). There are
four leaves, which we enumerate in the order they appear in a left-to-right breath first
search from the root. In notation similar to that of [Wat09, Example 3.16], we summarize
the maps corresponding to each leaf by:

x = x1y1 = x2 = x2
3y3 = x4y2

3

y = y1 = x2
2y2 = x3

2y2
3 = x4y3

4

(This is shorthand for writing ϕ1(x, y) = (xy, y), etc.) Computing Jacobians and factored
monomials, we see that the flatness is 6/5. Equivalently, the real log canonical threshold
is 5/6.

4.4. Example 3.18. Consider the function K : R3 → R given by

K(a, b, c) = (ab + c)2 + 3a2b4

This is a multiple of the function appearing in Example 3.18 in [Wat09]. A straightfor-
ward calculation shows that

K−1(0) = {(a, b, 0) ∈ R3 | ab = 0}

In other words, the algebraic set defined by K is the union of the a-axis and the b-axis.
Outside of this set, K takes positive values. We use blowups and diffeomorphisms to
produce normal crossings at each point in K−1(0), proceeding first along the a-axis, and
then the b-axis.

4.4.1. Along the a-axis. To produce normal crossings at (λ, 0, 0), we first pull back K along
the translation (a, b, c) 7→ (a + λ, b, c) so that the point of interest is the origin:

(ab + λb + c)2 + 3(a + λ)2b4
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Next, we pull back along the invertible linear map (a, b, c) 7→ (a, b, c − λb) to obtain:

(ab + c)2 + 3(a + λ)2b4

We then blow up along b = c = 0, and pull back to the two canonical coordinate charts
to obtain:

b2
(
(a + c)2 + 3(a + λ)2b2

)
and c2

(
(ab + 1)2 + 3(a + λ)2b4c2

)
We claim that the second of these has normal crossings on the relevant fiber. To see this,
observe that the function is the pullback of K under the map (a, b, c) 7→ (a + λ, bc, c −
λbc), and the fiber of this map over (λ, 0, 0) is {a = c = 0}. Factoring out the monomial
c2, the expression (ab + 1)2 + 3(a + λ)2b4c2 restricts to the constant 1 on the fiber.

To resolve the function on the first canonical coordinate chart, we first pull back along
the invertible linear map (a, b, c) 7→ (a, b, c − a) to obtain:

b2
(

c2 + 3(a + λ)2b2
)

Next, we blow up at b = c = 0, and pull back to the two canonical coordinate charts:

b4
(

c2 + 3(a + λ)2
)

and b2c2
(

1 + 3(a + λ)2b2
)

The second of these has normal crossings at any point (not just in the relevant fiber).

Case I. If λ ̸= 0, we argue that the first of the previous two expressions has normal
crossings on the fiber over (λ, 0, 0) in the original space. The map from the first canonical
coordinate chart to the original space is given by (a, b, c) 7→ (a + λ, b, b2c − ba − λb) so
the relevant fiber is {a = b = 0}. Factoring out the monomial b4, the expression c2 +
3(a + λ)2 restricts to c2 + 3λ2 > 0 on the fiber. We introduce subscripts and summarize
the maps from the three open sets resolving to normal crossings in notation similar to
that appearing in [Wat09],

a = a1 + λ = a2 + λ = a3 + λ

b = b1c1 = b2 = b3c3

c = c1 − λb1c1 = b2
2c2 − a2b2 − λb2 = b3c2

3 − a3b3c3 − λb3c3

The Jacobian determinants are c1, b2
2, and b3c2

3, while the factored monomials are c2
1, b4

2,
and b2

3c4
3. We conclude that the real log canonical threshold of the original function K

along the nonzero a-axis is 3/4.

Case II. It remains to consider the case λ = 0, wherein the function b4 (c2 + 3a2) does
not have normal crossings. Blowing up along a = c = 0, the pull backs to the two
canonical coordinate charts are given by:

a2b4
(

c2 + 3
)

and b4c2
(

1 + 3a2
)
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These have normal crossings. To summarize the λ = 0 case:

a = a1 = a2 = a3 = a4c4

b = b1c1 = b2c2 = b3 = b4

c = c1 = b2c2
2 − a2b2c2 = a3b2

3c3 − a3b3 = b2
4c4 − a4b4c4

The Jacobian determinants are c1, b2c2
2, a3b2

3, b2
4c4. The factored monomials are c2

1, b2
2c4

2,
a3b4

3, and b4
4c2

4. We conclude that the real log canonical threshold of the original function
K at the origin is 3/4, the same as on the rest of the a-axis.

4.4.2. Along the b-axis. To produce normal crossings at (0, λ, 0), we first pull back K along
the translation (a, b, c) 7→ (a, b + λ, c) so that the point of interest is the origin:

(ab + λa + c)2 + 3a2(b + λ)4

Next, we pull back along the invertible linear map (a, b, c) 7→ (a, b, c − λa) to obtain:

(ab + c)2 + 3a2(b + λ)4

We then blow up along a = c = 0, and pull back to the two canonical coordinate charts:

a2
(
(b + c)2 + 3(b + λ)4

)
and c2

(
(ab + 1)2 + 3a2(b + λ)4

)
The second of these is the pullback of K under the map (a, b, c) 7→ (ac, b + λ, c − λac).
The fiber of this map over (0, λ, 0) is {b = c = 0}. Factoring out the monomial c2, the
expression (ab + 1)2 + 3a2(b + λ)4 restricts to the constant 1 + 3a2λ4 > 0 on the fiber,
implying normal crossings.

Case I. If λ ̸= 0, we claim that a2 ((b + c)2 + 3(b + λ)4) is also normal crossings. To
see this, observe that this function is the pullback of K under (a, b, c) 7→ (a, b + λ, ac −
λa). The fiber of this map over (0, λ, 0) is {a = b = 0}. Factoring out the monomial
a2, the expression (b + c)2 + 3(b + λ)4 restricts to c2 + 3λ4 on the fiber. As λ ̸= 0,
this implies that we have pulled back to normal crossings. To connect with notation
appearing in [Wat09], we introduce subscripts and summarize the maps from the two
open sets resolving to normal crossings as:

a = a1 = a2c2

b = b1 + λ = b2 + λ

c = a1c1 − λa1 = c2 − λa2c2

The Jacobians are a1 and c2, while the factored monomials are a2
1 and c2

2. The real log
canonical threshold of the original function K along the nonzero b-axis is hence 1.

Case II. Although we have already concluded that the real log canonical threshold of K
at the origin is 3/4, we can see this in a different way by continuing the procedure from
above. When λ = 0, we do not have normal crossings for:

a2
(
(b + c)2 + 3b4

)
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We apply the origin-preserving diffeomorphism (a, b, c) 7→ (a, b, c− b) to obtain a2 (c2 + 3b4).
We then blow up along b = c = 0 to obtain the two pullbacks:

a2b2
(

c2 + 3b2
)

and a2c2
(

1 + 3b2
)

The second of these is normal crossings, while for the first we blow up again along
b = c = 0 and obtain:

a2b4
(

c2 + 3
)

and a2b2c2
(

1 + 3b2
)

The resulting maps can be summarized as:

a = a1c1 = a2 = a3 = a4

b = b1 = b2c2 = b3 = b4c4

c = c1 = a2(b2 − 1)c2 = a3b3(b3c3 − 1) = a4b4c4(c4 − 1)

These are exactly the maps appearing in [Wat09, Example 3.18]. Keeping track of fac-
tored monomials and Jacobian determinants, one recovers a real log canonical threshold
of 3/4 for the origin.

4.4.3. Summary. We have:

RLCT(K, (a, b, 0)) =

{
3/4 if b = 0
1 if a = 0 and b ̸= 0

In particular, the real log canonical threshold at the origin is 3/4. The (global) real log
canonical threshold of K−1(0) is the minimum of these, namely 3/4.



NOTES ON FLATNESS AND THE REAL LOG CANONICAL THRESHOLD 17

4.4.4. Trees. Along the nonzero a-axis, the point of interest is (λ, 0, 0) for λ ̸= 0.

(ab + c)2 + 3a2b4

(ab + c)2 + 3(a + λ)2b4

b2 ((a + c)2 + 3(a + λ)2b2) c2 ((ab + 1)2 + 3(a + λ)2b4c2)

b2(c2 + 3(a + λ)2b2)

b4 (c2 + 3(a + λ)2) b2c2 (1 + 3(a + λ)2b2)

(a,b,c) 7→(a+λ,b,c−λb)

(b,c) 7→(b,bc) (b,c) 7→(bc,c)

(a,c) 7→(a,c−a)

(b,c) 7→(b,bc) (b,c) 7→(bc,c)

At the origin, approaching along the a-axis, we have:

(ab + c)2 + 3a2b4

b2((a + c)2 + 3a2b2) c2((ab + 1)2 + 3a2b4c2)

b2(c2 + 3a2b2)

b4(c2 + 3a2) b2c2(1 + 3a2b2)

a2b4(c2 + 3) b4c2(1 + 3a2)

(b,c) 7→(b,bc) (b,c) 7→(bc,c)

(a,c) 7→(a,c−a)

(b,c) 7→(b,bc) (b,c) 7→(bc,c)

(a,c) 7→(a,ac) (a,c) 7→(ac,c)
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Along the nonzero b-axis, the point of interest is (0, λ, 0) for λ ̸= 0.

(ab + c)2 + 3a2b4

(ab + c)2 + 3a2(b + λ)4

a2 ((b + c)2 + 3(b + λ)4) c2 ((ab + 1)2 + 3a2(b + λ)4)

(a,b,c) 7→(a,b+λ,c−λa)

(a,c) 7→(a,ac) (a,c) 7→(ac,c)

At the origin, approaching along the b-axis, we have:

(ab + c)2 + 3a2b4

a2((b + c)2 + 3b4) c2((ab + 1)2 + 3a2b4)

a2(c2 + 3b4)

a2b2(c2 + 3b2) a2c2(1 + 3b2)

a2b4(c2 + 3) a2b2c2(1 + 3b2)

(a,c) 7→(a,ac) (a,c) 7→(ac,c)

(b,c) 7→(b,c−b)

(b,c) 7→(b,bc) (b,c) 7→(bc,c)

(b,c) 7→(b,bc) (b,c) 7→(b,bc)

5. Limits

In this section, we give a different, equivalent, definition of flatness. Let f be a real
analytic function defined on a neighborhood of the origin in Rd, and suppose f (0) = 0.
For any ϵ, consider the set of points in the unit square of Rd whose value under f is at
most ϵ in absolute value, that is:

f−1 ([−ϵ, ϵ]) ∩ [−1, 1]d

This is a closed neighborhood of the origin in Rn. We set:

• Sϵ to be the connected component of f−1 ([−ϵ, ϵ])∩ [−1, 1]d containing the origin.
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• Vf (ϵ) := Vol (Sϵ) to be the volume of Sϵ.

Finally, we define the flatness of f at the origin as:

(5.1) Flatness ( f , 0) =
1

ln
(

limϵ→0
Vf (eϵ)

Vf (ϵ)

)
where e is the base of the natural logarithm. Hence, the real log canonical threshold is
the inverse of this expression:

RLCT( f , 0) = ln

(
lim
ϵ→0

Vf (eϵ)

Vf (ϵ)

)
A precise explanation of the equivalence between the two definitions of flatness is be-
yond the scope of these notes. Briefly, starting with a resolution g : M → W as in
Theorem 3.1, one chooses an atlas {(Vα, ψα)} on M of coordinate charts satisfying the
conditions of the theorem, and a partition of unity pα relative to that atlas. Then

Vf (ϵ) =
∫

S f (ϵ)
1dx = ∑

α

∫
Vα∩(g◦ψα)−1(S f (ϵ))

pα(v)det(Jacv(g ◦ ψα))dv

One uses the normal crossings property of f ◦ g ◦ ψα and det(Jacv(g ◦ ψα)) to compute
this integral, being careful with the domain of integration. Rather than delving into
integration on manifolds, we confirm the equivalence in several easy examples.

Example 5.1. Let f (x) = xk. Then Vf (ϵ) = 2ϵ1/k, so that

ln

(
lim
ϵ→0

Vf (eϵ)

Vf (ϵ)

)
= ln

(
lim
ϵ→0

2e1/kϵ1/k

2ϵ1/k

)
= ln(e1/k) = 1/k.

We confirm that the flatness is k.

Example 5.2. Consider the case of a monomial in two variables: f (x, y) = xk1
1 xk2

2 . Without
loss of generality, suppose k2 ≥ k1. If k2 > k1, then the x-axis direction away from the
origin is ”flatter” than the y-axis direction from the origin. More precisely, plotting the
region Sϵ ⊆ [−1, 1]2, we see that the width along the x-axis is at least ϵ1/k2 , while the
width along the y-axis is at least ϵ1/k1 . One can easily compute that the area of this
region is:

Vf (ϵ) =
k2

k2 − k1
ϵ1/k2 +

k1

k1 − k2
ϵ1/k1

The leading exponent is 1/k2. On the other hand, if k1 = k2 = k, then

Vf (ϵ) =
k − ln(ϵ)

k
ϵ1/k

which is the limit of the previous expression as k1 → k2. In all cases, we obtain a flatness
of max(k1, k2).
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Example 5.3. Let f (x) = xk1
1 · · · xkd

n . If the ki are all distinct, then:

Vf (ϵ) =
d

∑
i=1

(
d

∏
j=1,j ̸=i

ki

ki − k j

)
ϵ1/ki

Taking ϵ < 1, the leading term is maxi(ϵ
1/ki). Calculating the limit in Equation 5.1, one

arrives at a flatness of maxi(ki). The case of non-distinct ki is more intricate but leads to
the same result.
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Appendix A. Successive blowups

A.1. Blowup of points on a manifold. Let M be a d-dimensional real analytic mani-
fold4. A coordinate chart at p ∈ M is a pair (V, ψ) where V is an open neighborhood
of the origin in Rd and ψ is an injective real analytic map V ↪→ M with ψ(0) = p. Let
W = ψ(V) ⊆ M be the image of ψ, and let ψ† : W → Rd be the left inverse of ψ.

Let B{0}(R
d) be the blow up of the origin of Rd. Given a coordinate chart (V, ψ) at

p ∈ M as above, we can pull back along ψ† to obtain the blow up of the neighborhood
W = ψ(V) at p:

Bp(W) := W ×Rd B{0}(R
d)

The projection to W has fiber Pd−1 over p and is an analytic diffeomorphism on W \ {p};
hence we have a map W \ {p} ↪→ Bp(W). The blow up of p in M relative to W is defined
as the coproduct (pushout) formed by glueing M\ {p} and Bp(W) along U \ {p}:

Bp,W(M) := (M\ {p}) ⨿
W\{p}

Bp(W)

There is a map to M given by the obvious inclusion in the first cofactor and the projection
to W in the second. The fiber of this map over p is a copy of Pd−1, and the map is an
analytic diffeomorphism on M \ {p}. Up to analytic diffeomorphism, the blow up
Bp,W(M) does not depend on the choice of coordinate chart W, so we write simply
Bp(M). For distinct points p, q ∈ M, blowups commute:

Bq(Bp(M)) = Bp(Bq(M))

A.2. Successive blowups. A more interesting procedure is to blow up points in the fiber
over p of the blowup. We describe this procedure in the case of blowing up the origin in
Rd, where the blow up admits canonical coordinate charts (Ui, ψi), for i = 1, . . . , d, with
the inverse maps ϕi : Rd → Ui. Since ϕi is a diffeomorphism, we have a diffeomorphism
of blowups:

ϕ̃i : B0(R
d)

∼−→ Bpi(Ui)

where pi := ψi(0) ∈ Ui is the image of the origin under ψi. Let Uij denote the image of
Uj under this map; these form an open cover of Bpi(Ui). Now, the point pi /∈ Uj for j ̸= i,
so the blow up Bpi(B0(R

d)) is covered by the 2d − 1 coordinate charts:

U1, . . . , Ui−1, Ui,1, . . . , Ui,d, Ui+1, . . . , Ud

Let pij ∈ Uij be the center of the coordinate chart Uij. We can then blowup again at
pij to from Bpij(Bpi(Bp(Rd))). Abstracting this observation, one can assign a blow up to
any d-nary tree. See Figure 1 for an illustration in the case d = 2. Finally, one can ask
whether this procedure generalizes to blowing up a general manifold; what fails is the
existence of canonical coordinate charts Ui on the blow up Bp(M), or, equivalently, a
canonical coordinate chart W about p.

4In these notes we are particularly interested in real analytic manifolds, but many of the results carry
over to smooth manifolds and algebraic varieties.
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Figure 1. Binary trees correspond to successive blowups of R2. The trees
above correspond to, in order, to the following blowups:

R2 B0(R
2) Bp2(B0(R

2)) Bp1(Bp2(R
2)) Bp1(Bp21(Bp2(B0(R

2))))

We note that the fourth can also be written as Bp2(Bp1(R
2)), while the

fifth can be written in two addition ways: Bp21(Bp1(Bp2(B0(R
2)))) and

Bp21(Bp2(Bp1(B0(R
2)))).

A.3. Successive blow up equations. We can write the successive blow up with equa-
tions. Specifically, B0∈Ui(B0(R

d)) is the set of (x, ℓ, p) ∈ Rd × Pd−1 × Pd−1 satisfying the
following equations:

xkℓj = xjℓk for all j, k
ℓk pj = ℓj pk for j, k ̸= i

xiℓi pj = ℓj pi for j ̸= i

We have a canonical open set Uj = {ℓj ̸= 0} for j ̸= i. In this open set, we can take
ℓj = 1, so that is is given by the set of (x, ℓ, p) such that:

xk = xjℓk for k ̸= j
pk = ℓk pj for k ̸= i

pi = ℓ2
i xj pj

We see that pj cannot be zero (which would lead to the contradiction that all the other
homogenous coordinates of p are zero), so we can take pj = 1. Then xj, and ℓk for k ̸= j
are free variables and determine the others. For example, xk = xjℓk for k ̸= j (including
the case k = i). We see that Uj is a copy of Rd. There is also a canonical open set
Uij = {ℓi ̸= 0, pj ̸= 0} for j = 1, . . . , d. In this open set, we can take ℓi = 1 and pj = 1, so
that is is given by the set of (x, ℓ, p) such that:

xk = ℓkxi for k ̸= i
ℓk = ℓj pk for k ̸= i, j
xi = ℓj pi

The variable ℓj is free, as is pk for k ̸= j. These determine the other variables. For
example,

xk =


ℓj pi if k = i
ℓ2

j pi if k = j

(ℓj)
2pk pi otherwise
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Uj = {ℓj ̸= 0} = {(x, ℓ, p) | xk =
ℓk
ℓj

xj , pk =
ℓk
ℓj

, , for k ̸= j}

for j ̸= i, and Uij = {ℓi ̸= 0, pj ̸= 0} for j = 1, . . . , d.

A.4. Monoid. Consider the monoid SL2(N) of two by two matrices with non-negative
integer entries and determinant 1.

Lemma A.1. The monoid SL2(N) is freely generated by the elements

m1 =

[
1 0
1 1

]
and m2 =

[
1 1
0 1

]
.

Sketch of proof. Let M be the submonoid generated by m1 and m2. Consider the map
max : SL2(N) → N that picks out the largest entry. We argue by induction that
max−1(n) ⊆ M for any n ∈ N. The base case is n = 1. Then one easily verifies
that max−1(1) = {id, m1, m2} ⊆ M. For the induction step, suppose we have shown that

max−1(n) ⊆ M for all n < N. Let g =

[
a b
c d

]
∈ SL2(N) with max(a, b, c, d) = N.

With these considerations in mind, we examine cases:

• It is impossible to have a = 0 while having the determinant equal to one.

• If b = 0, then ad = 1, so that a = d = 1. Then g = mc
1 ∈ M.

• If 0 < a ≤ b, then c < d (this is because 1 = ad − bc ≤ b(d − c)). Then:

g =

[
a b − a
c d − c

]
m2

• If 0 < b < a, then c ≥ d (this is because 1 = ad − bc > b(d − c) > d − c). Either
way, we have:

g =

[
a − b b
c − d d

]
m1

In the last two cases, the induction hypothesis implies that g is in M. This shows that
SL2(N) is generated by m1 and m2. By inspection of the cases above, we see that every
element g ∈ SL2(N) uniquely factors as g = hm1 or g = hm2. This implies that m1 and
m2 freely generate the monoid. □

Hence, we can regard the elements of SL2(N) as in bijection with the nodes of an infinite
binary tree. To connect with blowups:

Proposition A.2. Given g =

[
a b
c d

]
∈ SL2(N), there is a sequence of successive blowups of

R2 composing to a map M → R2, and a chart Rn ψ
↪→ M such that µ ◦ ψ(x, y) = (xayb, xcyd).
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Sketch of proof. We proceed by induction on the length n of g as a word in m1 and m2. If
n = 0, then g is the identity matrix, we take µ = idR2 . Otherwise, suppose n > 1. Then
one of the following cases hold:

g =

[
a − b b
c − d d

]
m1 or g =

[
a b − a
c d − c

]
m2

Let’s suppose the first case holds. By the induction hypothesis, there is a sequence of

successive blowups of R2 composing to a map M → R2, and a chart Rn ψ
↪→ M such

that µ ◦ ψ(x, y) = (xa−byb, xc−dyd). Blowing up this chart at the origin and taking the
first canonical chart yields the result. The argument for the second case is similar; one
takes the relevant chart at the origin but takes the second canonical coordinate chart
instead. □

Example A.3. Consider f (x, y) = xn + ym with n, m relatively prime, and greater than
1. Let u, v be positive integers such that nu − mv = 1. These can be chosen uniquely
satisfying:

0 < u < m and 0 < v < n

Set u′ = m− u and v′ = n− v, so that u′ and v′ are the unique positive integers satisfying
mv′ + nu′ = 1 and

0 < u′ < m and 0 < v′ < n

A short calculation shows that the matrix g :=
[

u u′

v v′

]
belongs to SL2(N). Writing

this as a word in m1 and m2, we obtain a minimal sequence of successive blowups

of R2 composing to a map M → R2, and a chart Rn ψ
↪→ M such that µ ◦ ψ(x, y) =

(xuyu′
, xvyv′). Blowing up this chart at the origin we replace it by two additional charts

with have:

µ ◦ ψ ◦ ψ1(x, y) = (xmyu′
, xnyv′) and µ ◦ ψ ◦ ψ1(x, y) = (xuym, xvyn)

Since all exponents are positive, the fiber over the origin is {xy = 0} in both cases. The
pullbacks of f to these charts are:

xmnynu′
+ xmnymv′ = xmnynu′

(1 + y) and xnuymn + xmvymn = xmvymn (x + 1)

One uses an argument similar to that appearing in Example 4.3 to show that these are
normal crossings.

Additionally, one can show that the pullback of f to any other coordinate chart on M
has normal crossings. This follows from a general fact, which we now state. Consider
the function xn1ym1 + xn2ym2 , where the ni and mi are non-negative integers. Blowing up
at the origin, the pullback of this function to at least one of the canonical open sets will
have normal crossings. The verification of this fact is a straightforward case analysis.

Examining factored monomials and Jacobian determinants, one computes that the flat-
ness of xn + ym at the origin is nm

n+m . The real log canonical threshold is 1
n + 1

m = n+m
nm .

The methods of this example can be used to show that the real log canonical threshold
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of the a sum f (x) + g(y) of analytic functions is the sum of the real log canonical thresh-
olds: RLCT( f (x) + g(y), (x∗, y∗)) = RLCT( f , x∗) + RLCT(g, y∗). In fact, it is a general
result that the real log canonical threshold is additive over sums of disjoint variables.
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