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1. INTRODUCTION

These expository notes provide an approach to motivating the definition of the real
log canonical threshold. Specifically, we first define the flatness of a singularity of a
real analytic variety, and then set the real log canonical threshold to be the inverse of
the flatness. While the real log canonical threshold is well-established in the algebraic
geometry and singular learning theory literature, the author finds that flatness is more
intuitive and easier to motivate from elementary principles. The main references are
[ , Chapters 2 and 3] and [ ]. We assume some familiarity with algebraic and
differential geometry, and with analytic functions.

1.1. Flatness of monomials. We begin with the elementary geometric observation that,
if k < ¢ are positive integers, then the graph of the function x’ is “flatter” at the origin
than that of x*. Formally, this means that the preimage of any neighborhood of the origin
under x¥ is contained in its preimage under x’. We set the flatness of a x* at the origin
to be k:

Flatness (xk, O) =k

Indeed, as k increases, the flatness increases’. Similarly, for a monomial x11<1 e xfld, the
flattest direction away from the singularity at the origin is determined by the maximum
exponent. We set:

Flatness (xllcl e xZ",O) := max (k;)
1

1This definition makes sense for functions of the form x" for r a nonzero real number; however, x” is
not analytic at the origin unless r is a positive integer.
1
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What about functions that are not monomials? The functions that are closest to being
monomials are the ones with normal crossings at the origin. Recall that an analytic
function f defined on an open neighborhood of R? is said to have normal crossings at the
origin if, on a suitably small neighborhood of the origin, f can be written of the form?*:

f(x) = a()a -y

for an analytic function a with a(0) # 0 and nonnegative integers ki, ..., k;. In this case,
we set the flatness of f at the origin to be the flatness of the monomial part:

Flatness(f,0) := Flatness (xll<1 e xf;d,O) = max (k;)
1
If d = 1, any real analytic function of one variable has normal crossings at the origin
[ , Section 1.2]. However, not every function of d > 1 variables has normal crossings
(consider the cuspidal cubic f(x,y) = y? + x°).

1.2. Outline. A primary goal of these notes is to illustrate how one defines and com-
putes the flatness of functions that do not have normal crossings. The definition relies on
a deep theorem of Hironaka on resolutions of singularities, which we discuss in Section
3. On the other hand, actually computing flatness usually involves performing blowups;
we provide background on blowups in Section 2. Blowups have the property that they
preserve normal crossings; the precise interaction provides motivation for the general
definition of flatness (which is why the section on blowups precedes the section on res-
olutions). We postpone a detailed discussion of examples until Section 4. We present a
different, equivalent, definition of flatness in Section 5; this definition amounts to tak-
ing the leading exponent of the volume of the preimage f~!([—¢,¢€]) as a function of €.
Finally, in Appendix A, we include a general discussion on the geometry of successive
blowups.

1.3. Flatness in general. To give a sense of the general definition of flatness, the Hiron-
aka’s theorem asserts that, given a real analytic function f defined on an open neigh-
borhood of the origin in R, there is (roughly speaking) a blowup map ¢ : M — R4
such the pullback of f to any coordinate chart has normal crossings at any point in the
fiber over the origin. Then the flatness of f is defined as the maximum of the flatness
of its normal crossings pullbacks, divided by a cost coming from the determinant of the
Jacobian of the blowup map g.

The map g is not unique, due in part to the fact that the pullback of a function with
normal crossings under a blowup again has normal crossings. Therefore, the cost is
defined in a way not to depend on the particular choice of blowup. In particular, if
f happens to be a monomial, then its flathess computed directly (i.e. the maximum
exponent) will match the flatness computed via any blowup.

2This definition usually includes the assumption that f(0) = 0; this does not seem necessary for our
purposes. If f(0) # 0, then one can take k; = 0 for all i, and the flatness is 0.
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We remark that the approach outlined above defines the flatness at the origin; for any
other point x* € RY, we set:

Flatness (f,x*) := Flatness (x — f(x +x"),0)

Moreover, the global flatness of f is the maximum flatness over all points in the domain
of f:
Flatness(f) := max Flatness (f,x")
x*edom(f)
In fact, since the flatness is zero at points where f(x*) # 0, we can take the maximum

only over f~1(0), as long as this set is nonempty. Finally, the real log canonical threshold
(local or global) is the inverse of the flatness:

1 RLCT(f) := min RLCT(f,p)

RLCT(f, p) := Flatness(f, p) pef-1(0)

If the flatness at a point is zero, then the real log canonical threshold is set to be +oo at
that point. We now turn our attention to blowups, before returning to flatness and the
real log canonical threshold in Section 3.

2. BLowurs

In this section, we define blowups precisely, and collect results which will be relevant in
later sections. Recall that projective space P~ is the moduli space of lines through the
origin in R

2.1. Incidence relation. The blowup of the origin in R, for d > 2, is defined as the
following space via an incidence relation:

B{O}(le) = {(x,ﬁ) eRYx P | x e E}

In other words, we consider the set of all pairs (x,£) of a point x in R? and a line ¢
through the origin in R? such that the point lies on the line. We have the two projections:

Byoy (RY

/\

The fiber of y of any nonzero x € RY is a single point since there is a unique line passing
through the origin and x. Meanwhile, the fiber over 0 € R¥ is a copy of P?~1, since
the latter parametrizes lines through the origin. Thus, as a family over R, the blow-up
is a bijection over the complement of the origin and a copy of projective space over the

-1
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origin:

P41« B (RY) +—— R\ {0}

| d -
{0} - > RY < - R\ {0}

On the other hand, the projection p : B {0}(1Rd) — P! is a fibration with fiber R.
Indeed, the fiber over any line is the set of points on that line, so the blow-up is the total
space of the tautological bundle over IP?~1. In the case d = 2, this total space, and hence
the blow up itself, is topologically a Mobius strip. The zero section is the fiber 1 ~1(0).
This description shows that the blow up can be given the structure of either a smooth
manifold, a real analytic manifold, or a smooth real algebraic variety. For our purposes,
we mostly focus on the real analytic structure, but comment on the other ones where
relevant.

2.2. Equations. To give another description of the blow up, we first note that two points
X,y € R? lie on the same line through the origin if and only if x;y; = x;y; for all
1 <1i,j <d. (The proof of this fact is elementary.) Hence, using homogenous coordinates
on P4~1 we obtain:

B{O}(]Rd) = {(ng) € R? x P41 | Xif]' = Xjfi for1 <i,j < d}

For example, in the case d = 2, we have:

By (R?) = {(x,@ € R? x P! | det [2 ’éﬂ = 0}

2.3. Closure. We illustrate a realization of the blow up as a closure. Consider the map
a: R\ {0} = RY x P91, x — (x, [x])

In other words, we include into the first factor and project to projective space in the
second factor. The image consists of pairs (x,¢) of a point in R¥ \ {0} and the line in R?
containing that point.

Lemma 2.1. The Euclidean closure of the image of a is precisely the blow-up Byp, (R?).

Sketch of proof. The inclusion of the closure in B {0}(]Rd) is immediate. For the opposite
inclusion, we show that (0, ¢) belongs to the closure of the image of a for any ¢ = [/; :

-1 44] € P41, Indeed, the image under a of the sequence 1 (%, cee, %’) in R%\ {0},
forn=1,2,..., limits to (0,¢).

We have used the Euclidean topology when speaking of the closure. However, a is map
of varieties, and the closure of its image in the Zariski topology is also B {0}(R2). This
follows from the following facts: (1) the Euclidean topology is finer than the Zariski
topology, so the Zariski closure contains the Euclidean closure and (2) By, (R?) is closed
in the Zariski topology which means the former is contained in the Zariski closure.
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2.4. Coordinate charts. To perform calculations on the blow up, it will be convenient to
introduce a collection of coordinate charts. Fori = 1,...,d, recall the canonical open sets
of P41 given by:

Pi-1[] = {ez (0110 ePY | 4 £ o}
Set U, to be the preimage of P“~[i] under the map p:

U, = {(x,g) ERY X P[4 £0, xil = xil for j,k = 1,...d}
f-
= {(x,ﬂ) E]Rd X]Pdil | gi 750, x]-:xiz]. fOI‘]Zl,d}
1

We see that there are coordinate charts:
Z; ifi=j
;i R — U, (VOlPi(Z))]‘:{ : L
ZiZ] ifi #j

polpi(Z):[ZlI-.-:Zi71:1:Zi+1:-..:Zd]

where we use the fact that a map to Uj; is the same as a pair of maps, one to R? and
another to IP4~1[i], such that the incidence condition is satisfied, which is the case: y o
Pi(z) € poi(z). The inverse of ¢; is given by:

X; ifi = ]

4 o .
7 ifi #j

1

¢ U — IRd, (PZ'(X,Z)]' = {
To write down the transition functions, first observe that the image of the intersection
U; N U; under ¢; is given by the complement of the z; coordinate hyperplane:
¢i(UiNUy) = {z € R? | z; # 0}

The transition functions are given by:

= if k=i
Kjj gbi(ui N LI]) — (P](ul N u]'), IXZ']'(Z)k = ZiZj ifk=j
% otherwise

Zj
We conclude that the U; form an atlas on By, (R%). We will refer to the U as the canonical
open sets coving the blowup By, (RY).
Since U; is defined as p~!(IP~1[i]), its image under p is P?~![i]. On the other hand, the

image of U; under y is the set of points where the coordinate x; being zero implies that
all other coordinates are zero:

u(U;) = {x € R?| x; # 0} U {0},
Equivalently, the image of U; under y is the complement of the punctured x;-axis in R¥.

Remark 2.2. For future reference, we note that the determinant of the Jacobian of y o ;
at z is given by det (Jac, (y o ¢;)) = z/ 1. The verification of this claim is an exercise; one
can reduce to the case i = 1.
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Remark 2.3. Later in these notes we will consider pulling back functions from R¥ to the

coordinate charts U; via y o 1;. For example, if f(x) = xllc1 e xzd is a monomial, then,

k ki_ Z‘k' ki k
fouoi(z) :le...ziill (Zi] J> ZiJ:f"'de
so that the exponent of z; is the sum of the original exponents, while all other exponents
remain unchanged.

Example 2.4. When d = 2, we have the open sets:
14
U, = {(x,é) eRZxP'| ¢ #0, xzleg—z}
1

UZ:{(x,E)eIszIPle;éO, xlzxzﬁ—l}
2

with coordinates given by:

qbl(x,é) = (Xl, ﬁ—z) 4)2(x,£) = (ﬁ—l,x2>
1 2
0i(z) = (z1,7122) , [1:22]) $2(2) = (2122,22) , 211 1])
and transition maps:
®17 - 4)1(LI1 N uZ) — (Pz(ul M uZ), (Zl,Zz) —> (21—2,2122>
ao1 : (U N Uz) — 1 (U N Uz), (Y1, 42) — (]/1]/2, }%)

The Jacobian of y o ¢; at z is easily seen to be {zl ZO}, with determinant z;; similarly,
2 Z1

the determinant of the Jacobian of y o ¢, is z>. The pullbacks of a monomial xll‘l xlzfz to Uy
and U, are, respectively, xllcﬁk2 x’2‘2 and to x’1<1 x§1+k2,

2.5. Blowups and normal crossings. An important property of blowups is that they
preserve normal crossings. Specifically, suppose f is a real analytic function defined? on
R?, and let u : Byoy (RY) — RY be the blowup at the origin. For any i = 1,...,d, the
pullback of f under yu o ¢; is a function RY — R.

Proposition 2.5. Let f be as above. If f has normal crossings at the origin, then, fori =1,...,d,
the pullback of f under i o p; has normal crossings at any point in (y o ;) ~1(0).

Sketch of proof. First, observe that the fiber (1 o 1;)~1(0) is equal to {z; = 0} C R%. Let
p=(M,...,Ai—1,0,Ai1q,...,A4) be a point in this fiber. Let T} : R? — R be translation
by p, so that 7,(z) = z + p. Then:

Zj ifj:i

HowioT(z) = {zi(z]-+/\]-) ifj # i

3The results below hold when f is defined only on a neighborhood of the origin in R¥.
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The proposition follows from showing that the pullback of f under y o ¢; o T, has normal
crossings at the origin. Since f itself has normal crossings at the origin, we can write:

k k
flx) =alx)x--xf
for non-negative integers k; and a real analytic function a such that a(0) # 0. Therefore,
the pullback of f under u o ;, shifted by p, is given by:

fouopioty(z) =a(puotp;orty(z) Z”H —1—/\

j#i
Set:
a(z) = a(popioty(z)) [T (z+1)5
Then (0) = a(0) ITja0 )\;{j # 0, and
NP1 ki
(2.1) fouotpioty(z) = d(z)z; I z
j#i,A=0
The result follows. U

In Section 1.1, we defined the flatness of an analytic function with normal crossings.
Since normal crossings are preserved by blowups, we can compare the flatness of a
function with normal crossings to the flatness of its pullback under a blowup. More
precisely, suppose f(x) = a(x)xllc1 e xgd has normal crossings at the origin, where the
k; are non-negative integers and a(0) # 0. Hence, the flatness of f at the origin is the
maximum of the k;. Now, fix i € {1,...,d},and letp = (Ay,...,A;1,0,Ai11,...,Ay) be a
point in the fiber (o 9;)71(0). Let 7, : R — R? be translation by p. Then we see from
Equation 2.1 that the flatness of the pullback is the sum of the exponents:

Flatness(f oy o ¢;, p) = Flatness(f o pt o ¢; 0 7,0)

(T ) <8

j#FiA=0

This mismatch can be corrected by incorporating a cost of blowing up. Specifically, in-
stead of comparing ) kj to each of the k; (the former will always be larger), we compare

the average =% Z L to the other exponents. We set the flatness of f at the origin relative to
the coordmate chart y o 9; o T, of the blowup to be:

(2.2) Flatness (f,0 | p o ¢; 0 T,) := max E]—k] max k;
. 7 ;’l wl p - d 7 ]#1/)\]20 ]

The point in (¢ o ¢;)~!(0) with maximum flatness is the origin:

ki L - —
Flatness (f,0 | p o 1;) = max (h , rnaxk]) d if max; k; = k;
d j#i max; (k;) otherwise
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We recover the flatness of f at the origin by taking the maximum overi =1,...,d:

Flatness(f,0) = max (Flatness(f,0 | p o ¢;,)) = max (k;)
i J
In Section 3.2 below, we generalize this procedure beyond simple blowups.

2.6. Blowups of higher-dimensional submanifolds. We generalize from blowing up
the origin in R? to blowing up the submanifold of R" given by the vanishing of d coor-
dinates. Here n > 2 is an integer, and we set 2 < d < n. Consider the codimension 4
submanifold of R" given by:

Vi={0}xR" = {xeR"|x; =xy=---=x; =0}
We recover the previous discussion with d = n. The blow up of V; in IR” is defined as:
By, (R") = By} (R?) x R"~*

or, equivalently, via an incidence relation By, (R") = {(x,¢) € R" x P41 | my(x) € ¢},
where 775 : R" — IRY is the projection onto the first d coordinates and we regard P?~! as
parameterizing lines through the origin in R?. We have projections:

By, (R")
U p
. N .

The fiber of p over x € R" \ V; is a single point, while the fiber of u over x € V; is a
copy of P“~1. Thus, we have “blown up” each point of the submanifold V; into a copy
of projective space while keeping the rest of R unchanged:

1

Vyx Pl e By (R") +—— R"\ V,

nll " lﬁ

Vd" > R" < =IR”\Vd

The projection p : By, (R") — IP?~1 is a fibration with fiber R x R"~¢; the blow up can
be identified with the total space of the product of the tautological bundle and the trivial
(n — d)-dimensional bundle. We also have the map

a:R"\ V; - R"x P41 x — (x, [ty(x)])
Since R" \ V; = (R?\ {0}) x R"~%, the arguments from the case n = d can be used to

show that the closure of a is By, (R").

In the above discussion, we have blown up the subvariety V; or R”. However, the
construction works just as well when restricting to an open subset W of the origin in R"
and blowing up V; N W. We write By, w (W), or simply By, (W), for this blow up.
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3. RESOLUTIONS

We are now ready to define the flatness of functions that do not have normal crossings
at the origin using a theorem of Hironaka.

3.1. Hironaka theorem. To state the theorem precisely, let M be a d-dimensional real
analytic manifold. A coordinate chart at p € M is a pair (V, ) where V is an open
neighborhood of the origin in RY and ¢ is an injective real analytic map V < M with
P (0) = p. We state a simplified version of the theorem of Hironaka, similar to the version
given in [ ].

Theorem 3.1 (Hironaka). Let f be a non-constant real analytic function defined on a nonempty
open neighborhood of the origin in RY. Then there exists:

o a d-dimensional real analytic manifold M, and
e a proper real analytic map ¢ : M — W, where W C R? is an open neighborhood of the
origin contained in the domain of f,

such that:

o the map g restricts to an analytic isomorphism M\ My — W\ {0}, where My =
¢ 1(0), and
e for every p € My, there is a coordinate chart (V,) at p such that:

fogoy(v) = a(v)z;llcl . U’;d

det (Jac, (g0 ) = b(v)o]' - - - ol
forall v € V, where a and b are real analytic functions with a(0) # 0 and b(0) # 0, and
the k; and h; are nonnegative integers.

We note that g o 1 is a map from the open set V C IR? to the open set W C R, and hence
its Jacobian at any v € V is a d by d matrix; we take the determinant of this matrix. This
procedure gives a function V — R taking v to det (Jac, (g0 ¢)).

3.2. Flatness in general. We now use the theorem above to define the flatness at the
origin. We adopt all notation from the theorem. Given p € My and a coordinate chart
(V, ) at p satisfying the conditions of the theorem, we set:

(31) Flatness (f/o | g0 l/]) - 12%%1 <h1 + )

In other words, the flatness of f at the origin relative to the map g o ¢ is defined as the
flatness of the pullback f o g o ¢, with an ”“averaging” cost in the denominator coming
from the Jacobian of g o 1.

Remark 3.2. Equation 3.1 is a direct generalization of the case when ¢ = y is a blowup
map and f has normal crossings, see Equation 2.2. In that case, for any p in the fiber of
u, we have p = ¢;(z) forsomei=1,...,dand z € RY; we can take the coordinate chart
at p given by y o ; o 7,. Recall from Remark 2.2 that det(Jac,(yo 90 1;)) = v? ~1, 50 that
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hi =d—1and hj = 0 for j # i. On the other hand, the i-th normal crossing exponent
of the pullback of f is the sum of the normal crossing exponents of f, while the other
normal crossing exponents are unchanged.

It is a fact that different coordinate charts at p (satisfying the conditions of the theorem)
give the same flatness, so we select one, denoted (V, 1), and set:

Flatness (f,0 | p) = Flatness (f,0 | go ¢)
Next, we set the flatness of f at x to be the maximum flatness of points p € M,:

Flatness (f,0) = max Flatness (f,0 | p)

pGMo

For any other point x* in the domain of f, we define the flatness by translating the
function so that the point of interest is the origin:

Flatness(f,x*) := Flatness(x — f(x + x¥),0)

Finally, the (global) flatness of f is the maximum of the flatness at all points in the
domain of f:

Flatness(f) = - erfilfé(f) Flatness(f, x*)

Since the flatness is zero when f(x*) # 0, we can take the maximum only over f~1(0),
as long as the latter set is nonempty.

Example 3.3. Suppose functions f, g : R — R satisfy f o g(x) = x* for a nonnegative
integer k, ¢’(x) = x"* for a nonnegative integer #, and g(0) = 0. Then, up to a constant,
g(x) = x"*1 so that

¥ = fog(x) = f(+"1).

k
It follows that, up to a constant, f(x) = x#+1, so that the flatness of f is % A warning
is in order: the function x” is not analytic at zero unless r is a non-negative integer.

Definition 3.4. Let f be a real analytic function defined on an open neighborhood of the
origin in R¥. For any x* in the domain of f, the real log canonical threshold is defined
as the inverse of the flatness:

N 1
RLCT(f,x*) = Flatness(f, x*)

If the flatness is zero, the real log canonical threshold defined as +oo.

4. EXAMPLES

We present a number of examples illustrating techniques for computing the flatness (or,
equivalently, the real log canonical threshold).
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4.1. Tree notation. This section can be skipped on first reading and referenced when
the reader arrives at the tree diagrams below. The examples below involve pulling back
functions along blowups and along diffeomorphisms, and can be summarized with a
(directed, rooted) tree. In the trees below, each vertex v is a labeled with a function
K, : RY — R. Each directed edge corresponds to a transformation R? — R¥; the function
at the target of the edge is the pullback of the function at the source. In symbols:

Kt(e) = Ks(e) ° ¢e

where s(e) and t(e) are the source and target of the edge e, respectively. The number of
emanating edges from a vertex carries various information:

e A single emanating edge e indicates that the transformation ¢, is a diffeomor-

phism.
e A count of n > 1 emanating edges indicates a blow up along a subset of n coor-
dinate axes x; = x;, = - = x;, = 0, where iy < i < --- <iyand i € {1,...,d}.

The j-th edge corresponds to the transformation:

xi], k= l]
(¥1,.. X))k = q xxp if k= iy for some j' € {1,...,n}\ {j}
Xj otherwise

e A leaf has no emanating edges. There is a unique path from the root to the leaf ¢;
composing the maps along the path in reverse order, we obtain a transformation
¢¢ of RY. The function K, has normal crossings at every point in the relevant fiber

of (Pg.

The notation and conventions will become clearer by examining examples.

4.2. Squared norm. Consider the function f(x,y) = x* + y?, whose vanishing set is the
origin. We blow up at the origin and pull back f to the two canonical coordinate charts
to obtain:

(fouoy)(x,y) =x*(1+y*) and  (fopoyn)(x,y)=y*(x*+1)

As the functions 1+ x? and 1 + y? are non-vanishing, these pullbacks have normal cross-
ings. The Jacobian determinants are:

det (]ac(x,y)(y © lpl)) =X and det <]ac(x,y)(‘u © 1702)) =Y
We conclude that the flatness is:

2 2
FlatneSS(xz + yZ,O) = MmaX (m, m) =1
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The real log canonical threshold is also equal to 1. The tree diagram (as per Section 4.1)
is given by:

x2+y2

RN

2(1+y) yA(x* +1)

In this simple example, there are two edges e; and e;, and two leaves ¢; and /5, enumer-
ated from left to right. The edge e; corresponds to the transformation y o ¢;, which is
the restriction of the blowup at the origin to the i-th canonical coordinate chart. In the
notation from Section 4.1:

P, = e (X, y) = (x,xy)  and Py, = P, (x,y) = (xy,Y)

In notation similar to that of [ , Example 3.16], these can be summarized as:

X =X1 = nyz
y=xiy1 =Yy2

4.3. Cuspidal cubic. Consider the function f(x,y) = x® + y?, whose vanishing set is
a cuspidal cubic. There is a singularity at the origin (both partial derivatives of the
irreducible polynomial f vanish there). We resolve this singularity to normal crossings
by blowing up three times. After the first blow up at the origin, the pullbacks of f to U;
and U, are given by:

B2 and PR = 2Py +1)

We have achieved normal crossings on Up; indeed, the fiber of the map U, — R? over
the origin is {y = 0}, so the non-monomial factor x>y + 1 is constant at 1 on the fiber.
Meanwhile, we blow up U at the origin. The pullbacks to Uj; and Uy, are given by

3+ xty? = P14 x?) and  x%P + %yt

We have achieved normal crossings on Uj; indeed, the fiber of the map U;; — R? over
the origin is {x = 0}, so the non-monomial factor 1+ xy? is constant at 1 on the fiber.
Meanwhile, we blow up Uj, at the origin. The pullbacks to Ujp; and Uiy, are given by

x84+ xfyt = 283 (1 +y) and 230+ %% = 2P (x +1).

These are the pullbacks of the original function f under (x,y) — (x?y, x>y?) and (x,y) >
(xy?, xy®), respectively. The fiber over the origin in both cases is xy = 0. We claim that
x%y3(1 + y) has normal crossings on {xy = 0}. The only points to consider are those in
the intersection of {xy = 0} and {x®y*(1 +y) = 0}. There are four cases:

e At (0,0), we take a(x,y) =1+ .

e At (0,—1), we take a(x,y) = y°.
e At (0,A), for A # 0, —1, we take a(x,y) = (1 +y).
e At (A,0), for A # 0, we take a(x,y) = x®(y +1).
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A similar argument shows that x?y®(x + 1) has normal crossings on the fiber {xy =
0}. Thus, we have used blowups to resolve to normal crossings. We summarize the
calculations with a tree:

3 +y2

™~

2+ 222 P2 (%Y +1)

— |

(1 + xy?) x3y3 + 2yt

)/ T

P (1+y P (x+1)

In this example, the left arrow emanating form a vertex corresponds to the transforma-
tion (x,y) — (x,xy), which is the restriction of the blowup at the origin to the first
canonical coordinate chart. The right arrow corresponds to (x,y) — (xy,y). There are
four leaves, which we enumerate in the order they appear in a left-to-right breath first
search from the root. In notation similar to that of [ , Example 3.16], we summarize
the maps corresponding to each leaf by:

2 2

x = X141 = x2 = x3Y3 = X4Y/3
_ A2 3.2 _ 3
Y= = X312 = X313 = X4V

(This is shorthand for writing ¢1(x,y) = (xy,y), etc.) Computing Jacobians and factored
monomials, we see that the flatness is 6/5. Equivalently, the real log canonical threshold
is5/6.

4.4. Example 3.18. Consider the function K : R® — R given by
K(a,b,c) = (ab+ c)* + 3a°b*

This is a multiple of the function appearing in Example 3.18 in [ ]. A straightfor-
ward calculation shows that

K71(0) = {(a,b,0) € R® | ab = 0}

In other words, the algebraic set defined by K is the union of the a-axis and the b-axis.
Outside of this set, K takes positive values. We use blowups and diffeomorphisms to
produce normal crossings at each point in K~1(0), proceeding first along the a-axis, and
then the b-axis.

4-4.1. Along the a-axis. To produce normal crossings at (A, 0,0), we first pull back K along
the translation (a,b,c) — (a+ A, b, ¢) so that the point of interest is the origin:

(ab + Ab+¢)® +3(a+ A)%b*
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Next, we pull back along the invertible linear map (a,b,c) — (a,b,c — Ab) to obtain:
(ab+¢)® +3(a+ A)*p?

We then blow up along b = ¢ = 0, and pull back to the two canonical coordinate charts
to obtain:

b <(a +¢)2+3(a+ A)zbz) and  ¢? ((ab +1)2+3(a+ A)2b4c2>

We claim that the second of these has normal crossings on the relevant fiber. To see this,
observe that the function is the pullback of K under the map (a,b,¢) — (a+ A, bc,c —
Abc), and the fiber of this map over (A,0,0) is {a = ¢ = 0}. Factoring out the monomial
c?, the expression (ab + 1)? + 3(a + A)%b*c? restricts to the constant 1 on the fiber.

To resolve the function on the first canonical coordinate chart, we first pull back along
the invertible linear map (a,b,¢) — (a,b,c — a) to obtain:

v (cz +3(a+ A)zbz)
Next, we blow up at b = ¢ = 0, and pull back to the two canonical coordinate charts:
b <c2 +3(a+ A)2> and  b*c? (1 +3(a+ A)zbz)

The second of these has normal crossings at any point (not just in the relevant fiber).

Case I. If A # 0, we argue that the first of the previous two expressions has normal
crossings on the fiber over (A, 0,0) in the original space. The map from the first canonical
coordinate chart to the original space is given by (a,b,c) — (a+ A,b,b*c — ba — Ab) so
the relevant fiber is {# = b = 0}. Factoring out the monomial b*, the expression c? +
3(a + A)? restricts to ¢ + 312 > 0 on the fiber. We introduce subscripts and summarize
the maps from the three open sets resolving to normal crossings in notation similar to
that appearing in [ 1

a=a+A =ay+ A =a3+A
b= b1C1 = bz = b3€3
cC=1C— Ablcl = b%C2 — llzbz — )\b2 = b3C% — a3b3C3 — Ab3C3

The Jacobian determinants are ¢y, b%, and bgC%, while the factored monomials are c%, b‘21,
and b2ci. We conclude that the real log canonical threshold of the original function K
along the nonzero a-axis is 3/4.

Case IL It remains to consider the case A = 0, wherein the function b* (c2 + 3a2) does
not have normal crossings. Blowing up along a = ¢ = 0, the pull backs to the two
canonical coordinate charts are given by:

a’b* <c2 + 3) and btc? (1 + 3a2>
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These have normal crossings. To summarize the A = 0 case:

a=a = 0ay = a3 = 04Cy
b= b1C1 = bZCZ = b3 = b4
c=c1 = bzcé — aybycs = a3b§C3 — asbs = bic4 — agbycy

The Jacobian determinants are ¢y, sz%,LZQ,bz, bic;;. The factored monomials are C%, b%c‘zl,
asb3, and bjc. We conclude that the real log canonical threshold of the original function
K at the origin is 3/4, the same as on the rest of the a-axis.

4.4.2. Along the b-axis. To produce normal crossings at (0, A, 0), we first pull back K along
the translation (a,b,c) — (a,b+ A, ¢) so that the point of interest is the origin:

(ab+ Aa+c)? +3a*(b+ A1)*
Next, we pull back along the invertible linear map (a,b,c) — (a,b,c — Aa) to obtain:
(ab+c)* +3a*(b+ A)*
We then blow up along a = ¢ = 0, and pull back to the two canonical coordinate charts:
a2 ((b +o)2+3(b+ A)4> and 2 ((ab +1)% +3a%(b + A)4)

The second of these is the pullback of K under the map (a,b,c) — (ac,b+ A, c — Aac).
The fiber of this map over (0,1,0) is {b = ¢ = 0}. Factoring out the monomial c?, the
expression (ab + 1)% + 3a%(b + A)* restricts to the constant 1 + 322A* > 0 on the fiber,
implying normal crossings.

Case L If A # 0, we claim that a? ((b+c)?+3(b+ A)*) is also normal crossings. To
see this, observe that this function is the pullback of K under (a,b,¢) — (a,b+ A, ac —
Aa). The fiber of this map over (0,A,0) is {a = b = 0}. Factoring out the monomial
a%, the expression (b + c)? + 3(b + A)* restricts to ¢® + 3A* on the fiber. As A # 0,
this implies that we have pulled back to normal crossings. To connect with notation
appearing in [ ], we introduce subscripts and summarize the maps from the two
open sets resolving to normal crossings as:

a = = a0y
b=0b+A =by+A
c=a101 — Am =y — Aaycy

The Jacobians are a; and ¢, while the factored monomials are a% and c%. The real log
canonical threshold of the original function K along the nonzero b-axis is hence 1.

Case II. Although we have already concluded that the real log canonical threshold of K
at the origin is 3/4, we can see this in a different way by continuing the procedure from
above. When A = 0, we do not have normal crossings for:

e ((b +o)?+ 3b4)
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We apply the origin-preserving diffeomorphism (a,b,c) + (a,b, c — b) to obtain a* (c* + 3b%).
We then blow up along b = ¢ = 0 to obtain the two pullbacks:

2> (c2+3b2) and a2 <1+3b2)

The second of these is normal crossings, while for the first we blow up again along
b = ¢ = 0 and obtain:

a’b* (cz + 3) and a’b*c? (1 + 3b2)

The resulting maps can be summarized as:

a=ac =az = a3 =y

b= bl = szz = b3 = b4C4

c=c1 =ay(by —1)c2 = a3bs(bscs — 1) = agbycy(cy — 1)
These are exactly the maps appearing in [ , Example 3.18]. Keeping track of fac-

tored monomials and Jacobian determinants, one recovers a real log canonical threshold
of 3/4 for the origin.

4.4.3. Summary. We have:

3/4 ifb=0

RLCT(K/(a/bIO)): {1 lfa:Oandb#O

In particular, the real log canonical threshold at the origin is 3/4. The (global) real log
canonical threshold of K~1(0) is the minimum of these, namely 3/4.
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4.4.4. Trees. Along the nonzero a-axis, the point of interest is (A,0,0) for A # 0.

(ab + ¢)? + 3a°p*

(a,b,c)—(a+A,b,c—Ab)

l

(ab+c)?> +3(a + 1)%b*
| T
(b,c)—(b,be) (b,c)—(be,c)
| T
v? ((a+c)*+3(a+A)%*?) ¢? ((ab+1)%+3(a + A)?b*c?)

(a,c)—(a,c—a)

b2(c? +3(a + 1)%b?)

/ \

(b,e)—(b,be) (b,c)—(be,c)

— T

b* (¢ +3(a+A)?) b?c? (14 3(a+ A)2b?)

At the origin, approaching along the 4-axis, we have:

(ab + c)? + 3a%b*
T
(b,c)—(b,be) (b,c)—(be,c)
! ~
b*((a + c)? + 3a2b?) c?((ab + 1) + 3a2b*c?)

(a,c)—(a,c—a)

!

b%(c* + 3a%b?)
| T~
(b,c)—(b,be) (b,c)—(be,c)
l T
b*(c? + 3a2) b2c?(1 + 3a%b?)
/ \
(a,c)—(a,ac) (a,c)—(ac,c)

— T

a’b*(c? + 3) b*c?(1 + 3a?)
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Along the nonzero b-axis, the point of interest is (0, A, 0) for A # 0.

(ab + c)? + 3a%p*

(a,b,c)—(a,b+A,c—Aa)

}

(ab+c)? +3a?(b+ A)*
/ \
(a,c)—(a,ac) (a,c)—(ac,c)
a> ((b+c)®>+3(b+2)%) 2 ((ab+1)2+3a*(b+ 1)%)

At the origin, approaching along the b-axis, we have:

(ab+ c)? + 3a’b*
T
(a,c)—(a,ac) (a,c)—(ac,c)
| T

a?((b+c)% +3b%) c2((ab+1)? + 3a%b*)

a?(c? + 3b%)
T
(b,c)—(b,be) (b,c)—(be,c)
| T
a’b?(c? + 3b?) a?c?(1 + 3b?)
/ \
(b,c)—(b,bc) (b,c)—(b,bc)
a’b*(c* + 3) a’b?c?(1 + 3b?)
5. LimiTs

In this section, we give a different, equivalent, definition of flatness. Let f be a real
analytic function defined on a neighborhood of the origin in R?, and suppose f(0) = 0.
For any €, consider the set of points in the unit square of RY whose value under f is at
most € in absolute value, that is:

fH(=ee)n[=1,1)°
This is a closed neighborhood of the origin in R". We set:

e S, to be the connected component of f~1 ([—¢,€]) N [~1,1]¢ containing the origin.
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e V¢(€e) := Vol (S¢) to be the volume of S..

Finally, we define the flatness of f at the origin as:

(5.1) Flatness (f,0) = !

In <hm€%0 fo (( ))>

where e is the base of the natural logarithm. Hence, the real log canonical threshold is
the inverse of this expression:

RLCT(f,0) = <hm i (ee)>

€—0 Vf( )

A precise explanation of the equivalence between the two definitions of flatness is be-
yond the scope of these notes. Briefly, starting with a resolution § : M — W as in
Theorem 3.1, one chooses an atlas {(Vy, o)} on M of coordinate charts satisfying the
conditions of the theorem, and a partition of unity p, relative to that atlas. Then

Vi(e) = /Sf tdx =} / o105 Po () detlIaco(g o))

One uses the normal crossings property of f o g o ¢, and det(Jac,(g o ¢n)) to compute
this integral, being careful with the domain of integration. Rather than delving into
integration on manifolds, we confirm the equivalence in several easy examples.

Example 5.1. Let f(x) = x*. Then Vj(e) = 2¢/¥, so that

In [ 1i —In({lim~=—— | =In(e"") = 1/k.
' (elg(l) Vi(e) ) ! (fflg(l) 2¢l/k ne ) =17k

We confirm that the flatness is k.

Example 5.2. Consider the case of a monomial in two variables: f(x,y) = x] xgz Without
loss of generality, suppose ky > ki. If ko > ki, then the x-axis direction away from the
origin is “flatter” than the y-axis direction from the origin. More precisely, plotting the
region S C [—1, 1]2, we see that the width along the x-axis is at least el/k2 while the
width along the y-axis is at least €!/K1. One can easily compute that the area of this
region is:

_ ke am kg
= e m TRkt

The leading exponent is 1/k;. On the other hand, if k; = k, = k, then

vyte) - EZI0te)

which is the limit of the previous expression as k; — k. In all cases, we obtain a flatness
of max (kq, kp).
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Example 5.3. Let f(x) = x’1<1 .- XX If the k; are all distinct, then:

d d

k; 1/k;

Vi(e) = Z (H .ki_lk) e
i=1 \j=1,j#i ]

Taking € < 1, the leading term is max;(e!/*). Calculating the limit in Equation 5.1, one

arrives at a flatness of max;(k;). The case of non-distinct k; is more intricate but leads to
the same result.
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APPENDIX A. SUCCESSIVE BLOWUPS

A.1. Blowup of points on a manifold. Let M be a d-dimensional real analytic mani-
fold*. A coordinate chart at p € M is a pair (V, ) where V is an open neighborhood
of the origin in R? and ¢ is an injective real analytic map V < M with ¢(0) = p. Let
W = (V) C M be the image of ¢, and let ' : W — R¥ be the left inverse of .

Let B {O}(IR”Z) be the blow up of the origin of R¥. Given a coordinate chart (V,¢) at
p € M as above, we can pull back along 1 to obtain the blow up of the neighborhood
W =y(V) at p:

Bp(W) := W Xga Bjoy (RY)

The projection to W has fiber P?~! over p and is an analytic diffeomorphism on W\ {p};
hence we have a map W\ {p} — B,(W). The blow up of p in M relative to W is defined
as the coproduct (pushout) formed by glueing M \ {p} and B,(W) along U \ {p}:

Byw(M) = (M\ {p}) [T Bp(W)
WA{p}
There is a map to M given by the obvious inclusion in the first cofactor and the projection
to W in the second. The fiber of this map over p is a copy of P?~1, and the map is an
analytic diffeomorphism on M \ {p}. Up to analytic diffeomorphism, the blow up
B,,w(M) does not depend on the choice of coordinate chart W, so we write simply
B, (M). For distinct points p,q € M, blowups commute:

By(Bp(M)) = By(By(M))

A.2. Successive blowups. A more interesting procedure is to blow up points in the fiber
over p of the blowup. We describe this procedure in the case of blowing up the origin in
R4, where the blow up admits canonical coordinate charts (U;, ¢;), fori =1,...,d, with
the inverse maps ¢; : RY — U;. Since ¢; is a diffeomorphism, we have a diffeomorphism
of blowups:
¢; : Bo(]Rd) SN Bp,.(ui)

where p; := $;(0) € U; is the image of the origin under ¥;. Let U;; denote the image of
U; under this map; these form an open cover of By, (U;). Now, the point p; ¢ U; for j # i,
so the blow up By, (By(IR%)) is covered by the 2d — 1 coordinate charts:

Uy, ..., Uiy, Uiq, .. Ui g, Uiss, . .., Uy

Let p;j € U;; be the center of the coordinate chart U;;. We can then blowup again at

pij to from Bpij(BPi(BP(IRd)))' Abstracting this observation, one can assign a blow up to
any d-nary tree. See Figure 1 for an illustration in the case d = 2. Finally, one can ask
whether this procedure generalizes to blowing up a general manifold; what fails is the
existence of canonical coordinate charts U; on the blow up B,(M), or, equivalently, a
canonical coordinate chart W about p.

4In these notes we are particularly interested in real analytic manifolds, but many of the results carry
over to smooth manifolds and algebraic varieties.
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bA S OS5 AR
o JAWAN
Ax  An £x ©° \ o

FIGURE 1. Binary trees correspond to successive blowups of IR%. The trees
above correspond to, in order, to the following blowups:

R® By(R?) Bp,(Bo(R?)) By, (By,(R?)) By, (Bpy (By, (Bo(R?))))
We note that the fourth can also be written as By, (B, (R?)), while the
fifth can be written in two addition ways: By, (Bp, (Bp,(Bo(R?)))) and
Ble(sz(Bm (BO(]RZ))))'

A.3. Successive blow up equations. We can write the successive blow up with equa-
tions. Specifically, Byey, (Bo(IR?)) is the set of (x,£,p) € R x P?~! x P?~! satisfying the
following equations:

xili = xily for all j, k
Ekp] = E]pk for j,k 75 i
xilipj = £jpi for j # i

We have a canonical open set U; = {{; # 0} for j # i. In this open set, we can take
¢; =1, so that is is given by the set of (x, ¢, p) such that:

X = ngk for k 75]
Px = fkp] for k 75 i
pi = lixjp;

We see that p; cannot be zero (which would lead to the contradiction that all the other
homogenous coordinates of p are zero), so we can take p; = 1. Then x;, and /j for k # j
are free variables and determine the others. For example, x; = x;fi for k # j (including
the case k = i). We see that U; is a copy of R?. There is also a canonical open set
Ui = {¢; #0, pj # 0} for j =1,...,d. In this open set, we can take ¢; = 1 and pj =1,s0
that is is given by the set of (x, ¢, p) such that:

X = Ekxi for k 75 i
b = jpx fork #1i,j
X; = E]Pz

The variable /; is free, as is py for k # j. These determine the other variables. For
example,

6]]91 ifk=1
X = szpl if k = ]
(¢;)*pkpi otherwise
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)
forj #i,and U;; = {{; #0,p; #0} forj=1,...,d.

l l .
u]:{gj%o}:{(xlglp)|xk:€_kx]/ pk:f/ ,fOI'k}A]}
]

A.4. Monoid. Consider the monoid SL,(IN) of two by two matrices with non-negative
integer entries and determinant 1.

Lemma A.1. The monoid SL,(IN) is freely generated by the elements

1o o !
m1—11 a m2—01.

Sketch of proof. Let M be the submonoid generated by m; and m,. Consider the map
max : SLp(IN) — IN that picks out the largest entry. We argue by induction that
max !(n) € M for any n € IN. The base case is n = 1. Then one easily verifies
that max~!(1) = {id, m;,my} C M. For the induction step, suppose we have shown that

max—l(n) C Mforalln < N. Let g = {Z Z] € SL,(IN) with max(a,b,c,d) = N.

With these considerations in mind, we examine cases:

e [t is impossible to have 2 = 0 while having the determinant equal to one.
e If b =0, thenad =1,sothata =d = 1. Then ¢ = m{ € M.

e If 0 < a <D, then ¢ < d (this is because 1 = ad — bc < b(d — ¢)). Then:

a b—a
3= {c t;l—c]m2

e If 0 < b < g, then ¢ > d (this is because 1 = ad — bc > b(d — ¢) > d — c). Either

way, we have:
a—b b
8§ le—d )™

In the last two cases, the induction hypothesis implies that g is in M. This shows that
SL,(IN) is generated by m; and my. By inspection of the cases above, we see that every
element ¢ € SLy(IN) uniquely factors as g = hmy or ¢ = hmjy. This implies that m; and
my freely generate the monoid. U]

Hence, we can regard the elements of SL,(IN) as in bijection with the nodes of an infinite
binary tree. To connect with blowups:

Proposition A.2. Given g = E b} € SLy(IN), there is a sequence of successive blowups of

d
R? composing to a map M — R?, and a chart R" AR M such that wo ¢(x,y) = (x*yb, xy*).
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Sketch of proof. We proceed by induction on the length n of ¢ as a word in m; and my. If
n = 0, then g is the identity matrix, we take y = idR2. Otherwise, suppose n > 1. Then
one of the following cases hold:

a—b b a b—a
8§  lc—a a|™ 8T a—c™
Let’s suppose the first case holds. By the induction hypothesis, there is a sequence of

successive blowups of R? composing to a map M — R?, and a chart R” F M such
that 1o ¢(x,y) = (x*by?, x*~9y). Blowing up this chart at the origin and taking the
tirst canonical chart yields the result. The argument for the second case is similar; one
takes the relevant chart at the origin but takes the second canonical coordinate chart
instead. 4

Example A.3. Consider f(x,y) = x" + y™ with n,m relatively prime, and greater than
1. Let u,v be positive integers such that nu — mv = 1. These can be chosen uniquely
satisfying:

O<u<m and O<ov<n

Set ' =m —uand v’ = n—v, so that u’ and v’ are the unique positive integers satisfying
mv' +nu’ =1 and

0<u <m and 0<v <n

/
. . u u o
A short calculation shows that the matrix g := L} v’] belongs to SL,(IN). Writing
this as a word in m; and m,, we obtain a minimal sequence of successive blowups

of R? composing to a map M — R?, and a chart R” AN M such that yo¢(x,y) =
(xy, xty?). Blowing up this chart at the origin we replace it by two additional charts
with have:

popoyi(xy) ="y, 2"")  and  popoy(xy) = (x'y",x"y")
Since all exponents are positive, the fiber over the origin is {xy = 0} in both cases. The
pullbacks of f to these charts are:

mn, nu' mn, mo' mn, nu' (1+y)

Xy xTyTT =xy

and xnuymn + xmvymn — xmvymn (x + 1)
One uses an argument similar to that appearing in Example 4.3 to show that these are
normal crossings.

Additionally, one can show that the pullback of f to any other coordinate chart on M
has normal crossings. This follows from a general fact, which we now state. Consider
the function x"1y"™ + x2y"2, where the n; and m; are non-negative integers. Blowing up
at the origin, the pullback of this function to at least one of the canonical open sets will
have normal crossings. The verification of this fact is a straightforward case analysis.

Examining factored monomials and Jacobian determinants, one computes that the flat-

ness of x" +y™ at the origin is ;7. The real log canonical threshold is 141l ndm

The methods of this example can be used to show that the real log canonical threshold
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of the a sum f(x) + g(y) of analytic functions is the sum of the real log canonical thresh-
olds: RLCT(f(x) + g(y), (x*,y*)) = RLCT(f, x*) + RLCT(g,y*). In fact, it is a general
result that the real log canonical threshold is additive over sums of disjoint variables.
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