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1. Introduction and Set-up

These notes provide an exposition of the expectation-maximization (EM) algorithm for
clustering. One can regard this algorithm as an unsupervised learning analogue of
Linear Discriminant Analysis. The main reference for these notes is [For19, Section 9.2].
We focus on the theoretical justification for the algorithm rather than implementation
details.

1.1. The underlying process. Suppose we have d-dimensional data that we would like
to classify into k clusters. We imagine that the underlying sampling procedure is a
(hidden) two-step process:

(1) A cluster is chosen. For j = 1, . . . , k, the probability of choosing the j-th cluster is
unknown, and denoted by πj. Note that ∑k

j=1 πj = 1.

(2) Once a cluster is chosen, a sample is taken from a distribution corresponding to
that cluster. Write f j(x|θj) be the probability density function of cluster j, where
x ∈ Rd. We assume the formula for f j is known, but that the parameters θj are
unknown.

We group the unknown parameters into a tuple Θ = (θ1, . . . , θk, π1, . . . , πk). The main
question we would like to address is:

→ Assuming this process is valid (with all its unknown parameters), can
we tell which cluster each sample came from?

We examine two of the main examples:

Example 1.1 (Mixture of normals). Suppose each cluster is normally distributed, and
let µ1, . . . , µk be the means. Suppose further that the covariance matrix of each cluster
is known. We can apply a transformation to all the data that makes all the covariance
matrices simultaneously the identity. This means that we can reduce to the case where
each cluster has density function given by:

f j(x|µjz) =
1√
2π

exp
(
−1

2

(
x− µj

)T (
x− µj

))
1
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In this case, the tuple of unkown parameters is given by: Θ = (µ1, . . . , µk, π1, . . . , πk).
Note that µj ∈ Rd and each πj belongs to [0, 1], with the condition that ∑k

j=1 πj = 1.

Therefore, the space of all possible parameters is
(
Rd)k × [0, 1]k−1 and has dimension

dk + k− 1.

Example 1.2 (Topic model). Suppose each cluster is distributed according to a multino-
mial distribution with unknown probabilities pj, . . . , pk. In other words we have:

f j
(
x|pj

)
=

(
∑d

v=1 xv

)
!

x1! · · · xd!

d

∏
u=1

pxu
ju

where pj = (pji, . . . , pjk) and ∑d
u=1 pju = 1 for all j. In this case, the tuple of un-

known parameters is Θ = (p1, . . . , pk, π1, . . . , πk). Note that each pj is a vector in Rd

whose entries are non-negative and sum to one. Meanwhile, each πj belongs to [0, 1],
with the condition that ∑k

j=1 πj = 1. Therefore, the space of all possible parameters is(
[0, 1](d−1)

)k
× [0, 1]k−1 and has dimension dk− 1.

1.2. One-hot vectors. What does it mean to classify our data into k clusters? Recall the
one-hot vectors in Rk:

e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . ek = (0, . . . , 0, 1)

These are also the standard basis vectors for Rk. Giving a classification of our data is the
same as assigning a one-hot vector to each sample point; the coordinate of the single 1
indicates which cluster we’ve assigned the sample to. More formally, let X ∈ RN×d be
the data matrix. As usual, the i-th row is a d-dimensional sample, denoted xi ∈ Rd, and
there are N samples total. We have:

Definition 1.3. A classification of the data X ∈ RN×d is a matrix ∆ ∈ RN×k, each row of
which is a one-hot vector.

Given a cluster j ∈ {1, . . . , k}, we observe that:

p(ej|Θ) = πj p(x|Θ, ej) = f j(x|θj) p(x, ej|Θ) = f j(x|θj)πj

Indeed, the first equality reflects the fact that the cluster j is chosen with probability πj,
the second equality reflects the fact that the density function of x given that it comes
from the j-th cluster is f j, and the third equality is an application of the definition of
conditional probability: p(x, ej|Θ) = p(x|Θ, ej)p(ej|Θ). Using the law of total probability
and conditioning on the one-hot vectors, we arrive at a formula for the density of x:

(1) p(x|Θ) =
k

∑
j=1

p(x|ej, Θ)p(ej|Θ) =
k

∑
j=1

f j(x|θj)πj
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Next, using the definition of conditional probability, we observe that the conditional
probability of cluster ej given a point x is:

p(ej|x, Θ) =
p(x, ej|Θ)

p(x|Θ)
=

f j(x|θj)πj

∑k
`=1 f`(x|θ`)π`

.

Finally, for i = 1, . . . , N, and j = 1, . . . , k, let w(Θ)
ij be the conditional probability of the

i-th sample point xi belonging to cluster ej, that is:

w(Θ)
ij = p(ej|xi, Θ) =

f j(xi|θj)πj

∑k
`=1 f`(xi|θ`)π`

.

2. The EM algorithm

If there are N sample points in our data set, then the total number of ways to classify the
data into k clusters is equal to kN. Indeed, there are k choices for each of the N samples.
Our task is to select a particular classification, and the EM algorithm provides a method
for doing so. Here is the algorithm:

2.1. The algorithm.

• Initialization: Start with an estimate

Θ(0) = (θ
(0)
1 , . . . , θ

(0)
k , π

(0)
1 , . . . , π

(0)
k )

for the unknown parameters Θ.

• Loop: For n = 0, 1, 2, . . . , recursively define a new estimate Θ(n+1) from Θ(n) as
follows:

– E-Step: Take the expected value of the log-likelihood function for Θ given a
classification, where each classification is weighted by its density given Θ(n).
This results in a function of Θ that we denote by Q(n):

Q(n)(Θ) = E∆∼p(∆|Θ(n),X)[L(Θ; X, ∆)]

This function admits an explicit formula (see Proposition 3.5 below):

(2) Q(n)(Θ) =
N

∑
i=1

k

∑
j=1

w(n)
ij
(
log f j(xi|θj) + log πj

)
Note that w(n)

ij = p(ej|xi, Θ(n)) =
f j(xi|θ

(n)
j )π

(n)
j

∑k
`=1 f`(xi|θ

(n)
` )π

(n)
`

can be computed directly

from the current estimate Θ(n). (While the algorithm does not require com-
putation of the log-likelihood function L(Θ; X, ∆) per se, this function also
admits an explicit formula, see Proposition 3.2.)
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– M-Step: In the function Q(n), we regard Θ as ranging over all possible pa-
rameter values; each is a candidate for the new estimate of the parameters.
The value Q(n)(Θ) is the ‘score’ of a candidate or paremeters Θ. This score
varies depending on our current estimate Θ(n). We update the estimate as
the candidate with the largest score:

Θ(n+1) = arg max
Θ

Q(n)(Θ)

At this point, the sample xi is tentatively assigned to the cluster j for which
w(n+1)

ij is highest.

– Check for convergence: If the difference ‖Θ(n+1) − Θ(n)‖ between Θ(n+1)

and Θ(n) is larger than a predetermined tolerance level ε, then iterate the
loop. Otherwise, let Θ̂ = Θ(n+1) be our final estimate of the parameters, and
exit the loop.

• Output: Declare the final assignment of classes to be:

xi belongs to the cluster arg max
j

w(Θ̂)
ij

Equivalently, xi is assigned to the j maximizing f j(xi|θ̂j)π̂j.

2.2. The update rule. In certain cases, one can perform the M-step by setting gradients
equal to zero and computing an explicit formula for the update rule. We illustrate this
in several cases.

Lemma 2.1. Fix j ∈ {1, . . . , k}. The update of πj in the M-step is given by: π
(n+1)
j =

w(n)
ij
N .

Proof. Ignoring terms that do not contain any πj’s, and recalling that the πj sum to 1, we
reduce the M-step for the πj’s to the following:

arg max
(π1,...,πk)

N

∑
i=1

k

∑
j=1

w(n)
ij log πj subject to

N

∑
j=1

πj = 1.

The corresponding Lagrangian is

L(π1, . . . , πk, λ) =
N

∑
i=1

k

∑
j=1

w(n)
ij log πj + λ

(
1−

N

∑
j=1

πj

)
.

Setting the gradient equal to zero, one deduces that λ = N and then arrives at the
claimed update rule. �
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Example 2.2 (Mixture of normals). Suppose we are in the setting of Example 1.1, where
each cluster is normally distributed with unknown mean µj. In this case, the computa-

tion of w(n)
ij simplifies to:

w(n)
ij =

exp
(
−1

2

(
xi − µ

(n)
j

)T (
xi − µ

(n)
j

))
π
(n)
j

∑k
`=1 exp

(
−1

2

(
xi − µ

(n)
`

)T (
xi − µ

(n)
`

))
π
(n)
`

.

Using the definition of f j, and ignoring terms that do not contain any µj’s, we reduce
the M-step for the µj’s to the following:

µ
(n+1)
j = arg max

µj

N

∑
i=1

w(n)
ij

(
−1

2

(
xi − µj

)T (
xi − µj

))
Setting the gradient with respect to µj, one arrives at the update rule:

µ
(n+1)
j =

∑N
i=1 w(n)

ij xi

∑N
i=1 w(n)

ij

.

Example 2.3 (Topic model). Suppose we are in the setting of Example 1.2, where each
cluster is multinomially distributed with unknown probabilities pj. In this case, the

computation of w(n)
ij simplifies to:

w(n)
ij =

∏d
u=1

(
p(n)ju

)xiu
π
(n)
j

∑k
`=1 ∏d

u=1

(
p(n)`u

)xiu
π
(n)
`

.

Using the definition of f j, ignoring terms that do not contain any pj’s, and recalling that
the entries of each pj sum to 1, we reduce the M-step for the pj’s to the following:

p(n+1)
j = arg max

pj

N

∑
i=1

d

∑
u=1

w(n)
ij xiu log(pju) subject to

d

∑
u=1

pju = 1

Setting the gradient of the corresponding Lagrangian equal to zero, one arrives at the
update rule:

p(n+1)
j =

∑N
i=1 w(n)

ij xi

∑N
i=1 w(n)

ij si

where si = ∑d
u=1 xiu = xT

i 1d is the sum of all the entries in xi.

3. Justification of the E-step

This section is devoted to proving Equation 2, which is the heart of the E-step of the
algorithm. We first collect facts about the joint density function and the likelihood func-
tion.
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3.1. The joint density function. For a one-hot vector δ ∈ Rk, we write δ as a tuple:
δ = (δ1, . . . , δk) where exactly one of the δj is equal to one and the rest are zero.

Lemma 3.1. Let x ∈ Rd and δ ∈ Rk a one-hot vector. Then the joint density of x ∈ Rd and the
classifying vector δ is given by:

p(x, δ|Θ) =
k

∏
j=1

(
f j(x|θj)πj

)δj

Proof. Given a cluster ` ∈ {1, . . . , k}, we have already argued that:

p(x, e`|Θ) = p(x, e`|Θ)p(e`|Θ) = f`(x|θ`)π`

The formula in the lemma follows from observing that δ = e` for some `, and the right-
hand side have all factors equal to one except for the `-th one. �

3.2. The likelihood function. We now give a formula for the log likelihood function of
the parameters Θ given data X and a classification ∆. Write δij for the i, j entry of the
matrix ∆ ∈ RN×k, and δi for the i-th row of ∆.

Proposition 3.2. Given data X and a classification ∆, the log-likelihood function of Θ is:

L(Θ; ∆, X) =
N

∑
i=1

k

∑
j=1

δij
(
log f j(xi|θj) + log πj

)
Proof. The independence of the samples implies that the density of X and ∆ given Θ is
the product of the individual densities: p(X, ∆|Θ) = ∏N

i=1 p(xi, δi|Θ). The log likelihood
function is therefore:

L(Θ; ∆, X) = log p(X, ∆|Θ) = log

(
N

∏
i=1

p(xi, δi|Θ)

)

= log

(
N

∏
i=1

k

∏
j=1

(
f j(xi|θj)πj

)δij

)
=

N

∑
i=1

k

∑
j=1

log
((

f j(xi|θj)πj
)δij
)

=
N

∑
i=1

k

∑
j=1

δij
(
log f j(xi|θj) + log πj

)
where we use Lemma 3.1 for p(xi, δi|Θ) =

(
f j(xi|θj)πj

)δij . �

3.3. The function Q. The density of ∆ given X and Θ is given by:

(3) p(∆|X, Θ) =
N

∏
i=1

p(δi|xi, Θ) =
N

∏
i=1

p(xi, δi|Θ)

p(xi|Θ)

where the first equality follows from the independence of the samples, and the second
from the definition of conditional probability. For the purposes of this section, we do
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not need to be more explicit about this density at the moment. If necessary, one may use
Equation 1 and Lemma 3.1 to write out the last expression in terms of the f j and πj.

Remark 3.3. One can write the density of ∆ given X and Θ in terms of the wij as follows.
The rows of ∆ are ej1 , ej2 , . . . , ejN for some j1, j2, . . . , jN, where each ji ∈ {1, . . . , k}. With
this notation in hand, we may write:

(4) p(∆|X, Θ) =
N

∏
i=1

p(eji |xi, Θ) =
N

∏
i=1

w(Θ)
i,ji

Given data X ∈ RN×d, we define a function Q that takes in two sets of parameters Θ1
and Θ2, and gives the expected value of the log-likelihood of the Θ1 with density of
classifications specified by Θ2:

Definition 3.4. For parameters Θ1 and Θ2, we set:

(5) Q(Θ1, Θ2) = E∆∼p(∆|X,Θ2)[L(Θ1; ∆, X)]

In practice, the set of parameters Θ2 will be a known estimate that we can use to compute
the density of ∆ explicitly. Meanwhile, the set of parameters Θ1 will be a dummy
variable. Note that in the EM algorithm, we have Q(n)(Θ) = Q(Θ, Θ(n)). The ‘M-step’
of the EM algorithm will seek to maximize Q with respect to Θ1 = Θ with Θ2 = Θ(n)

fixed. The following proposition justifies Equation 2 appearing in the E-step of the EM-
algorithm.

Proposition 3.5. Given data X ∈ RN×d, we have:

Q(Θ, Θ̂) =
N

∑
i=1

k

∑
j=1

(
log f j(xi|θj) + log πj

)
w(Θ̂)

ij

where Θ = (θ1, . . . , θk, π1, . . . , πk) and Θ̂ = (θ̂1, . . . , θ̂k, π̂1, . . . , π̂k).

Proof. For i = 1, . . . , N and j = 1, . . . , k, we make the following abbreviations:

cij = log f j(xi|θj) + log πj and wij = w(Θ̂)
ij =

f j(xi|θ̂j)π̂j

∑k
`=1 f`(xi|θ̂`)π̂`

We aim to show that

(6) Q(Θ, Θ̂) =
N

∑
i=1

k

∑
j=1

cijwij.

From Proposition 3.2, we have that the log-likelihood function of Θ is given by L(Θ; ∆, X) =

∑N
i=1 ∑k

j=1 δijcij, and hence:

Q(Θ, Θ̂) = E∆∼p(∆|X,Θ̂)[L(Θ; ∆, X)] = ∑
∆
L(Θ; ∆, X)p(∆|Θ̂, X)

= ∑
∆

N

∑
i=1

k

∑
j=1

δijcij p(∆|Θ̂, X)
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where ∆ ranges over all the possible kN classification matrices. We now rearrange the
sum so that, for each i and j, we can isolate only those ∆ whose i-th row is the one-hot
vector ej:

∑
∆

N

∑
i=1

k

∑
j=1

δijcij p(∆|Θ̂, X) =
N

∑
i=1

k

∑
j=1

cij ∑
∆

δij p(∆|Θ̂, X)

=
N

∑
i=1

k

∑
j=1

cij ∑
∆:δi=ej

p(∆|Θ̂, X)

This is valid since δij = 1 only if δi = ej, and otherwise δij = 0. We now claim that
∑∆:δi=ej

p(∆|Θ̂, X) = wij. To this end, we first make the following deductions:

∑
∆:δi=ej

p(∆|Θ̂, X) = ∑
∆:δi=ej

N

∏
u=1

p(δu|Θ̂, xu)

= ∑
∆:δi=ej

p(ej|Θ̂, xi)
N

∏
u=1 ; u 6=i

p(δu|Θ̂, xu)

= p(ej|Θ̂, xi) ∑
∆−i

p(∆−i|Θ̂, X−i)

where the first equality follows from the independence of the samples; the second from
the fact that we are only interested in the terms where δi = ej; the third from factoring,
and using the notation X−i to denote the matrix X with the i-th row removed, and
similarly for ∆−i. Now, the definition of conditional probability together with Lemma
3.1 imply that

p(ej|Θ̂, xi) =
p(xi, ej|Θ̂)

p(xi|Θ̂)
=

f j(xi|θ̂j)π̂j

∑k
`=1 f`(xi|θ̂`)π̂`

= wij.

Meanwhile, ∑∆−i
p(∆−i|Θ̂, X−i) is the sum over all values of a (discrete) density function,

so is equal to one. We conclude that ∑∆:δi=ej
p(∆|Θ̂, X) = wij. Therefore, Q(Θ, Θ̂) =

∑N
i=1 ∑k

j=1 cijwij, which is what we wanted to show. �
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