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1. Introduction

1.1. Parameterized models. In statistical learning, one often assumes a ”true” probabil-
ity density function q(x) generating observed data. This density function is usually not
directly tractable, but approximated with members of a parameterized family of den-
sities p(x | w), where the parameters w belong to a subset W of Euclidean space. For
example, normal distributions are parameterized by their mean and variance, in which
case we have w = (µ, σ2) ∈ R × R>0. In essence, one seeks w ∈ W minimizing the
”distance” between p(x | w) and q(x).

In this way, the question arises of how to define ”distances” between distributions; this is
answered by the notion of Kullback–Leibler (KL) divergence. In fact, the KL divergence
defines a new geometry on W, where the ”distance” between w1 and w2 is given by the
KL divergence of p(x | w1) from p(x | w2). In general, this is not a metric (in particular,
it usually differs from the Euclidean metric on W), but provides the probabilistically cor-
rect geometry on which to implement learning algorithms. Moreover, Fisher information
can be thought of as the curvature of this probabilistic geometry on W.

1.2. Outline. In these expository notes, we begin by defining entropy, KL divergence,
and Fisher information (Section 2). Our running example is the normal distribution.
In Section 3, we relate these concepts back to statistical learning, with an emphasis on
models with unit variance Gaussian noise. We examine a number of examples in detail
in Section 4, including linear regression, two-layer neural networks, and models with
parameter space symmetries. Finally, in Appendix A, we include somewhat advanced
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material showing how symmetries can lead to singular models. We assume intermedi-
ate, mathematical familiarity with probability and statistics. References and motivation
include [Car23, Bis13, Wat09, KR23].

1.3. Notation. We comment on some notation used in these notes. For an open set
W ⊆ Rd, the second-order Taylor expansion at w0 ∈ W of a real analytic function
f : W → R is:

f (w) = f (w0) + (w − w0)
T∇w0 f + (w − w0)

T∇2
w0

f (w − w0)
T + . . .

for w in an open neighborhood of w0 in W, where ∇w0 f ∈ Rd is the gradient at w0 and
∇2

w0
f ∈ Rd×d is the Hessian matrix at w0. We assume familiarity with tensor products,

and freely use the isomorphism Rm×n ≃ Rm ⊗ Rn between the space of m by n matrices
and the tensor product of Rm and Rn. Additionally, we note that the natural map
Rm ⊕ Rn → Rm ⊗ Rn can be expressed as taking the pair of vectors x ∈ Rm and y ∈ Rn

the m by n matrix xyT. Finally, we write ‘log’ for the natural logarithm.

2. Divergence

2.1. Entropy. Recall that a probability density function, or just density, on Rk is a function
p : Rk → R satisfying:

(1) p(x) ≥ 0 for all x ∈ Rk.
(2) p is almost everywhere continuous.
(3) The Riemann integral1

∫
Rk p(x)dx is equal to one.

The cross-entropy of a density p relative to a density q is defined as:

H[q, p] := −
∫

Rk
q(x) log p(x)dx

as long as the support of q is contained in the support of p (up to a set of measure zero);
otherwise, the cross entropy is +∞. If p(x) = q(x) = 0 for some x, then we set the
product q(x) log p(x) to be equal to zero. The cross entropy is equal to the expected
value of − log p(X) for a random variable X with density q. One can show that, for any
p and q, we have:

(2.1) H[q, p] ≥ H[q, q]

with equality if and only if p = q almost everywhere. The entropy of a density q is
defined as its cross entropy relative to itself:

H[q] := H[q, q] = −
∫

Rk
q(x) log q(x)dx

1For k = 1, the bounded Riemann integral
∫ b

a p(x)dx exists if and only if p(x) is almost everywhere
continuous on [a, b], i.e., if and only if the set of points where p is discontinuous has Lebesgue measure
zero [Shr04, Theorem 1.3.8]. Taking limits (if they exist) gives the Riemann integral

∫
R

p(x)dx. This
generalizes to Rk.
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Finally, the relative entropy of a density p relative to a density q is defined as:

DKL(q||p) := −
∫

Rk
q(x) log

p(x)
q(x)

dx = H[p, q]− H[q]

This quantity is also known as the Kullback–Leibler divergence, or just KL divergence. Again,
the definition requires that the support of q is almost everywhere contained in the sup-
port of p; otherwise, the KL divergence is +∞. By virtue of 2.1, the KL divergence is
non-negative, and is equal to zero if and only if p(x) = q(x) almost everywhere. The KL
divergence is not a metric, and is not even symmetric. Still, it is the correct information-
theoretic way to measure the ”distance” that p is from q. One interpretation of the KL
divergence is as the expected excess surprise from sampling from p as an approximation
for the actual density q.

Example 2.1. Let r > 0. The uniform density is defined as p(x) = 1/r for x ∈ [0, r]
and zero otherwise. Its entropy is H[p] = log(r), so increases with r, and is negative for
0 < r < 1. Suppose q and p are uniform densities on [0, r] and on [0, s], respectively.
Suppose further that r ≤ s so that the support of q is contained in the support of p. Then
their relative entropy is DKL(p||q) = log(s)− log(r).

Example 2.2. The normal density with mean µ ∈ R and variance σ2 ∈ R>0 is defined as

p(x) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)
for x ∈ R. Its entropy is calculated2 to be:

H[p] = log
(

σ
√

2πe
)
= log(σ) + log

(√
2π
)
+

1
2

,

which increases with σ (and doesn’t depend on µ). Suppose q and p are normal densities
with means µ0, µ and variances σ2

0 and σ2, respectively. The cross entropy3 of q and p is

H[q, p] = log(σ) + log
(√

2π
)
− σ0 + (µ − µ0)

2

2σ2

and hence the relative entropy of p relative to q is:

DKL(q||p) = log
σ

σ0
+

σ2
0 + (µ − µ0)

2

2σ2 − 1
2

.

If σ0 = σ, then this reduces to a multiple of the squared Euclidean distance between the
means: 1

2σ2 |µ − µ0|2.

2.2. Families. Let PD(Rk) denote the set of probability density functions on Rk. Let
W ⊆ Rd be a non-empty open subset of Euclidean space Rd. An (analytic) W-family of
densities is the assignment of a density on R for every w ∈ W:

W → PD(Rk), w 7→ p(−|w)

We think of W as the set of parameters for a family of distributions. We make the
following assumptions (some of which may be weakened without much effect on the
results below):

2One uses the substitution u = x2

2σ2 and a value of the Gamma function: Γ(3/2) =
√

π/2.
3The substitution is u = (x−µ0)

2

2σ2
0

, and one uses Γ(1/2) =
√

π and Γ(3/2) =
√

π/2.
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• The density p(−|w) is analytic for any w ∈ W.
• For each x ∈ R, the map W → R defined as w 7→ p(x|w) is analytic.
• The entropy H[p(−|w)] converges for every w ∈ W.
• The relative entropy DKL (p(−|w0)||p(−|w1)) converges for every w0, w1 ∈ W
• The support of p(− | w) is independent of w.

A W-family is also knowns as a statistical model parameterized by W. By slight abuse of
notation, we set:

DKL(w0||w1) := DKL (p(−|w0)||p(−|w1))

In this way, we pull back the relative entropy to a real-valued binary function on W ⊆ Rd.

Example 2.3. Let W = R × R>0. For w = (µ, σ2) ∈ W, set p(x|w) to be the nor-
mal density with mean µ and variance σ2. From Example 2.2, we have DKL(w0||w!) =

log σ1
σ0
+

σ2
0+(µ1−µ0)

2

2σ2
1

− 1
2 .

Definition 2.4. Fix w0 ∈ W. The KL divergence from w0 is the function

Dw0 := DKL(w0 || −) : W → R

so that Dw0(w) = DKL(w0 || w). When w0 is clear from context, we write simply D
for Dw0 . Meanwhile, the Fisher information at w0 ∈ W is defined as the Hessian of the
function Dw0 at w = w0. This gives a map:

I : W → Rd×d, w0 7→ ∇2
w0
(Dw0)

The proof of the following lemma is a straightforward verification.

Lemma 2.5. Fix w0 ∈ W. The gradient of the divergence from w0 vanishes at w = w0:

∇w0(Dw0) = 0

Example 2.6. Continuing the example of the normal distribution family, the gradient of
D = D(w0||−) at w is:

∇wD =

(
µ − µ0

σ2 ,
σ2 − σ2

0 + (µ − µ0)
2

σ3

)
,

which evaluates to zero if and only if w = w0. The Hessian is:

∇2
wD =

 1
σ2

2(µ−µ0)
σ3

2(µ−µ0)
σ3

−1
σ2 +

3(σ2
0+(µ−µ0)

2)
σ4


At w = w0, we obtain the Fisher information, which is positive definite:

I(w0) = ∇2
w0

D =
1
σ2

0

[
1 0
0 2

]
Returning to the general case, the fact that Dw0(w0) = 0 means that D vanishes up to
first order at w0, and the curvature of the KL divergence from w0 is given by the Fisher
information matrix at w0. Since D has a global minimum at w0, the Fisher information
I(w0) is always positive semi-definite. We introduce some terminology. A W-family is:
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• identifiable if the map W → PD(Rk) is injective.

• positive definite if the Fisher information matrix I(w) is positive definite for every
w ∈ W.

• regular if it is both identifiable and positive definite

• singular if it is not regular.

• strictly singular if it is not identifiable and not positive definite.

Figure 1. The outer circle represents all possible W-families. The left inner
circle is the set of identifiable families, while the right inner circle is the
set of positive definite families. They overlap in the set of regular families.
All models that are not regular are singular, while those that are both non-
identifiable and indefinite are strictly singular.

See Figure 1 for a diagrammatic description of these definitions. Our terminology differs
from that in [Wat09, Section 1.2]; we find the latter presentation potentially inconsistent.

We end this discussion by noting that the Fisher information is the same as the (negative)
expected value of the Hessian ∇w0 log p(X|w) for a random variable X valued in Rk with
density p(x|w0). In symbols:

I(w0) = −EX∼p(−|w0)

[
∇2

w=w0
log p(x|w)

]
3. Statistical learning

3.1. Sampling. We focus on Bayesian supervised learning with N-dimensional input
space and M-dimensional output space. A sample is a random variable (X, Y) valued in
RN × RM with density function

q(x, y) : RN × RM → R

We can write q(x, y) = q(y|x)q(x) as the product of the distribution of the input q(x)
and the conditional distribution q(y|x) of the output given an input. Assumptions:
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• The input distribution q(x) is known. We will refer to this as the sampling density.
• The joint distribution q(x, y), while unknown, has finite variance.

3.2. Models. To model the unknown distribution q(y|x), we choose a family of con-
ditional distributions parametrized by an open subset W ⊆ Rd. Formally, we have a
map:

p : W × RN → PD(RM), (w, x) 7→ p(−|x, w)

such that w 7→ p(y|x, w) is an analytic map on W for any (x, y) ∈ RN × RM. Since the
input distribution q(x) is known, the modeled sampling distribution for a given w ∈ W
is:

pw(x, y) := p(y|x, w)q(x)

which we may also denote p(x, y|w). Comparing to the true distribution q(x, y) via
relative entropy, we get a function on W:

K : W → R

w 7→ DKL(q||pw)

This is our ”loss metric”; statistical learning techniques seek w ∈ W that minimizes this
function. There is a w0 ∈ W such that q = pw0 almost everywhere if and only if the
fiber K−1(0) is nonempty. The assumption of analyticity implies that this fiber is a real
analytic set.

3.3. Unit variance Gaussian noise. One source of the modeled conditional distributions
is from parameterized families of functions RN → RM. Specifically, an analytic function
f : W × RN → RM can be thought of as a family of functions RN → RM, and each such
family gives rise to a conditional distribution by adding unit variance Gaussian noise:

(3.1) p(y|x, w) =
1

(
√

2π)M
exp

(
−1

2
∥y − f (w, x)∥2

)
Suppose the true conditional distribution is also unit variance Gaussian, i.e.,

q(y|x) = 1
(
√

2π)M
exp

(
1
2
∥y − µ(x)∥2

)
for some function µ : Rn0 → R. Since we are working with unit variance Gaussians, the
entropy of pw(x, y) = p(y|x, w)q(x) relative to the the true density a(x, y) = q(y|x)q(x)
is obtained as the expected value of the squared distance between the outputs at the two
parameter values:

K(w) =
1
2

∫
Rn0

q(x)∥ f (w, x)− µ(x)∥2dx

(See Example 2.2 above.) As mentioned, we seek points in the fiber K−1(0); these points
will all be critcal points of K. We note the inclusion, which may be proper:

{w ∈ W | µ = f (w,−) almost everywhere} ⊆ K−1(0).

Depending on the nature of µ and q, the fiber K−1(0) may be empty.
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3.4. Unit variance Gaussian noise and same model class. Continuing the set-up from
above, suppose the true conditional distribution is also unit variance Gaussian, with
mean coming from the W-family, so that:

q(y|x) = 1
(
√

2π)M
exp

(
1
2
∥y − f (w0, x)∥2

)
for some w0 ∈ W. Hence, K = DKL(w0||−) and w0 ∈ K−1(0). Set:

Jacw = d f (−, x)w ∈ RM×d

to be the Jacobian of f (−, x) : W → RM. We have:

∇wK =
∫

RN
q(x)JacT

w ( f (w, x)− f (w0, x)) dx ∈ Rd,

which vanishes at w = w0. To be clear, the transpose JacT
w a d by M matrix which is

multiplied by the M-vector f (w, x)− f (w0, x). Similarly, we have:

∇2
w0

K =
∫

RN
q(x)JacT

w0
Jacw0dx = E[Jacw0 ] ∈ Rd×d

3.5. Free energy. Let {(X1, Y1), (X2, Y2), . . . } be a sequence of random variables valued
in RN × RM that is independent and identically distributed according to q. Given a
sample Dn = {(xi, yi)}n

i=1 of these random variables, we have the empirical cross entropy
for any w ∈ W:

Ln(w) = − 1
n

n

∑
i=1

log p(yi|xi, w)

The assumption of finite variance and the central limit imply that Ln(w) limits to the
cross entropy H[q||pw] as n → ∞.

Now suppose we have a prior density ϕ : W → R on the parameter space W such that
ϕ(w) > 0 for all w ∈ W. Given data Dn, Bayes’ rule yields the posterior density:

p(w|Dn) =
p(Dn|w)ϕ(w)

p(Dn)

The denominator of the posterior is known as the partition function or evidence; using the
law of total probability and the fact that p(Dn|u) = ∏n

i=1 p(yi|xi, u) = exp (−nLn(u)),
the partition function is given by:

Zn =
∫

W
p(Dn|u)ϕ(u)du =

∫
W

exp (−nLn(u)) ϕ(u)du

Hence, the posterior takes the form:

p(w|Dn) =
exp (−nLn(w)) ϕ(w)

Zn

Taking logs of both sides yields:

log p(w|Dn) = log ϕ(w) + Fn − nLn(w)

where Fn = − log Zn is the free energy. A later version of these notes may feature a more
detailed discussion of free energy; for now, we move on to examples.
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4. Examples

In each of the following examples, we consider a specific model class f : W ×RN → RM.
We add unit variance Gaussian noise, fix a sample density q(x), and obtain a family of
distributions pw(x, y) = p(y|x, w)q(x) as in equation 3.1. We assume the true density
belongs to our model class so that q = pw0 for some w0 ∈ W, and form the relative
entropy function K = DKL(w0||−). For each example, we compute the gradient ∇wK at
an arbitrary point in W, and the Hessian ∇2

w0
K at the point w0.

4.1. Linear regression. We model inputs in RN and outputs in RM via an affine linear
transformation x 7→ Ax + b together with unit variance Gaussian noise. Specifically, the
parameter space is

W = RM×N ⊕ RM = RM ⊗ RN+1

The map f is given by:

f : W × RN → RM, (A, b, x) 7→ Ax + b

Computing derivatives, we obtain the Jacobian:

Jacw := d f (−, x)w = idM ⊗
[

x
1

]
∈ RM ⊗ RM ⊗ RN+1

It follows that:

∇wD =
∫

RN
q(x) (Ax + b − A0x − b0)⊗

[
x
1

]
dx ∈ RM ⊗ RN+1

∇2
w0

D = idM ⊗
∫

RN
q(x)

[
x
1

] [
xT 1

]
dx = idM ⊗

[
E[XXT] E[X]
E[XT] 1

]
where we use express the Hessian as an element of

W ⊗ W = (RM ⊗ RN+1)⊗ (RM ⊗ RN+1)

≃ RM×M ⊗
(

RN×N ⊕ RN ⊕ RN ⊕ R
)

The Hessian, and hence the Fisher information, does not depend on w0. We conclude
that the Fisher information is positive definite if and only if variance-covariance matrix
of the input sampling density p is positive definite.

4.2. Composition. Suppose we have smooth maps f : U × Rn0 → Rn1 and g : V ×
Rn1 → Rn2 where U and V are open subsets of Rd1 and Rd2 , respectively. The parameter
space in this case is W = U × V ⊆ Rd1+d2 and the model is the composition:

W × Rn0 → Rn2 , (u, v, x) 7→ g(v, f (u, x))

To compute the gradient and Hessian of the function K, we set:

A = dg(v, f (−, x))u = dg(v,−) f (u,x) ◦ d f (−, x)u ∈ Rn2×d1

B = dg(−, f (u, x))v ∈ Rn2×d2
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where we use the chain rule in the first line. Then:

∇(u,v)K =
∫

Rn0
p(x)

[
AT

BT

]
(g(v, f (u, x))− g(v0, f (u0, x)))dx

∇2
(u0,v0)

K =
∫

Rn0
p(x)

[
AT

0 A0 AT
0 B0

BT
0 A0 BT

0 B0

]
dx =

[
E[AT

0 A0] E[AT
0 B0]

E[BT
0 A0] E[BT

0 B0]

]
where A0 and B0 are obtained from A and B by substituting (u0, v0) for (u, v).

4.3. Two-layer neural network. Consider a two-layer neural network with layer sizes
(n0, n1, n2) and activation4 σ : Rn1 → Rn1 . Then the parameter space consists of two
matrices and two bias vectors:

W = (Rn1×n0 × Rn1)× (Rn2×n1 × Rn2)

We have the feedforward function5:

F : W × Rn0 → Rn2 , (u, b, v, c, x) 7→ vσ(ux + b) + c

As this is a composition, we can apply the analysis of the previous section with f ((u, b), x) =
σ(ux + b) and g((v, c), z) = vz + c. This yields:

A = (V ◦ dσz)⊗
[

x
1

]
B = idn2 ⊗

[
σ(z)

1

]
where z = ux + b ∈ Rn1 , and dσz ∈ Rn1 ⊗ Rn1 is the Jacobian of σ at z. Hence:

AT
0 A0 =

[
x
1

]
⊗
(

dσT
z0
◦ vT

0 v0 ◦ dσz0

)
⊗
[

x
1

]
∈ Rn0+1 ⊗ Rn1 ⊗ Rn1 ⊗ Rn0+1

AT
0 B0 =

[
x
1

]
⊗
(

dσT
z0
◦ vT

0

)
⊗
[

σ(z0)
1

]
∈ Rn0+1 ⊗ Rn1 ⊗ Rn2 ⊗ Rn1+1

BT
0 B0 =

[
σ(z0)

1

]
⊗ idn2 ⊗

[
σ(z0)

1

]
∈ Rn1+1 ⊗ Rn2 ⊗ Rn2 ⊗ Rn1+1

where w0 = (u0, b0, v0, c0) and z0 = u0x + b0.

4.4. Parameter space symmetries. Let G be a Lie group acting on W, and let f : W ×
RN → RM be such that f (gw, x) = f (w, x) for any w ∈ W, x ∈ RN, and g ∈ G. Fixing
w0 ∈ W and a sampling density, we form the corresponding function K : W → R as
above. Suppose the orbit of w0 under G is of positive dimension. Then the Hessian
∇2

w0
K of K at w0 not positive definite; indeed, the infinitesimal action of G provides

vectors in the kernel of the Hessian. See Appendix A for more details.

4While the activation is often pointwise, meaning the same function R → R is applied in each coordi-
nate, we consider the more general case.

5Somewhat unconventionally, we use u and v to denote matrices, since U and V are reserved for open
subsets of Euclidean space.
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4.4.1. Simple example. Consider the action of G = R>0 on W = R2 and via λ · (u, v) =
(λu, λ−1v). The Lie algebra is Lie(R<0) = R, and the infinitesimal action of ξ = 1 ∈ R

at w = (u, v) is the (tangent) vector ξw = (u,−v). The function:

f : W × R → R, ((u, v), x) 7→ vux

is G-invariant in the W factor. The corresponding function K is given by:

K(w) =
1
2

∫
RN

q(x)(vux − v0u0x)2dx

The Hessian at w0 = (u0, v0) is easily seen to be:

∇2
w0

K = E[X2]

[
v2

0 u0v0
u0v0 u2

0

]
If u0 = v0 = 0, the Hessian is zero. Otherwise, the vector (u0,−v0) belongs to the kernel
of the Hessian, and this is precisely a vector provided by the infinitesimal action. We
conclude that the Hessian is not invertible, regardless of the value of w0.

4.4.2. Neural network examples. More sophisticated examples in the context of neural net-
works come from choosing activations with symmetries. Specifically, in the two-layer
case with layer sizes (n0, n1, n2) and activation σ : Rn1 → Rn1 , the parameter space
consists of two matrices and two bias vectors:

W = (Rn1×n0 × Rn1)× (Rn2×n1 × Rn2)

There is an action of G = GLn1(R) on the parameter space via:

g · (u, b, v, c) = (gu, gb, vg−1, c)

Consider the following cases:

• For the trivial activation σ = idn1 , the feedforward function is invariant for the
action of the entire group G = GLn1(R). The orbit of any point other than zero is
of positive dimension.

• For the pointwise ReLU activation σ(z) = (ReLU(z1), . . . , ReLU(zn1)), the feed-
forward function is invariant for the subgroup of G consisting diagonal matrices
with positive entries along the diagonal. The orbit of any nonzero point is of
positive dimension. Note that the feedforward is not smooth when using ReLU
activations; however, the theory still holds for piecewise smooth functions.

• For radial activations (see [GLW23]), the feedforward function is invariant for
the subgroup of orthogonal matrices in G. The orbit of any nonzero point is of
positive dimension.

For further analysis of parameter space symmetries, see [ZGW+
23].
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Appendix A. Symmetries

A.1. Jacobians, gradients, and Hessians. Let X ⊂ Rn be an open subset of Euclidean
space Rn, and let f : X → Rm be a differentiable function. Let f1, . . . , fm : X → R be
the components of f , so that f (x) = ( f1(x), . . . , fm(x)). The Jacobian of f , also know as
differential of f , at x ∈ X is the following matrix of partial derivatives evaluated at x,
using the standard coordinates (x1, . . . , xn) on Rn:

d fx :=



∂ f1
∂x1

∣∣∣∣
x

∂ f1
∂x2

∣∣∣∣
x

· · · ∂ f1
∂xn

∣∣∣∣
x

∂ f2
∂x1

∣∣∣∣
x

∂ f2
∂x2

∣∣∣∣
x

· · · ∂F2
∂xn

∣∣∣∣
x

...
... . . . ...

∂ fm
∂x1

∣∣∣∣
x

∂ fm
∂x2

∣∣∣∣
x

· · · ∂ fm
∂xn

∣∣∣∣
x


The differential d fx is a matrix in Rm×n, and hence defines a linear map from Rn to Rm,
or, more precisely, from the tangent space TxX of X at x to the tangent space Tf (x)R

m

of Rm at f (x). Observe that if f itself is linear, then, as matrices, d fx = f for all points
x ∈ X. If g : Rm → Rp is another differentiable map, then the chain rule implies that,
for all x ∈ Rn, we have:

d(g ◦ f )x = dg f (x) ◦ d fx.

In the special case the m = 1, the Jacobian is a 1 × n row vector, and the gradient ∇x f of
f at x ∈ X is defined as the transpose of the Jacobian d fx:

∇v f := (d fx)
T =

[
∂ f
∂x1

∣∣∣∣
x

. . . ∂ f
∂xn

∣∣∣∣
x

]T

=

(
∂ f
∂xi

∣∣∣∣
x

)n

i=1
∈ Rn

Moreover, the Hessian of f at x is defined as the matrix of second partial derivatives:

∇2
x f :=


∂2 f

∂x1∂x1

∣∣∣∣
x

. . . ∂2 f
∂x1∂xn

∣∣∣∣
x

... . . . ...
∂2 f

∂xn∂x1

∣∣∣∣
x

. . . ∂2 f
∂xn∂xn

∣∣∣∣
x

 ∈ Rn×n

The Hessian is symmetric, and can be realized at the Jacobian matrix of the map ∇ f :
X → Rn taking x to the gradient ∇x f ; that is: ∇2

x f = d (∇ f )x.

A.2. Group actions. Let G be a Lie group acting smoothly on an open set X ⊆ Rn. In
other words, we have a smooth map:

a : G × X → X

that satisfies (1) the unit axiom, namely a(1G, x) = x for all x ∈ X where 1G ∈ G is
the identity of G, and (2) the associativity axiom, namely a(g, a(h, x)) = a(gh, x) for all
g, h ∈ G and x ∈ X. We write ρ(g) = a(g,−) : X → X for the automorphism of X
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corresponding to g ∈ G. Let g be the Lie algebra of G, realized as the tangent space T1G G
to G at the identity. The differential of the map a(−, x) : G → X at 1G gives a map

d(a(−, x))1 : g → TxX

The infinitesimal action of a Lie algebra element ξ ∈ g at x ∈ X is defined as the image of
ξ under this map, which is a tangent vector to x:

ξx := d(a(−, x))1(ξ) ∈ TxX ≃ Rn

The infinitesimal action can be described in terms of the exponential map exp : g → G
as:

ξx =
d
dt

∣∣∣∣
t=0

a (exp(tξ), x) ,

noting that g is a vector space, hence it makes sense to scale a Lie algebra element ξ ∈ g
by a scalar t ∈ R.

A.3. Equivariant maps. Let a : G × X → X be a group action as above, setting ρ(g) =
a(g,−) : X → X. We abbreviate a(g, x) as just gx. A smooth function f : X → R is
G-invariant function if f (gx) = f (x) for all g ∈ G and x ∈ X.

Lemma A.1. Suppose f : X → R is G-invariant, and let x ∈ X.

(1) For any g ∈ G, the gradient of f at gx is obtained from that at x via via the transpose of
the Jacobian matrix of ρ(g) at gx:

∇gx f = dρ(g−1)T
gx(∇x f )

(2) For any ξ ∈ g, the infinitesimal action ξx is orthogonal to the gradient:

⟨∇x f , ξx⟩ = 0

Sketch of proof. For the first claim, we first compute differentials:

d fgx = d( f ◦ ρ(g−1))gx = d fx ◦ d(ρ(g−1))gx

where we use the invariance of f and chain rule. Taking transposes gives the result. For
the second claim, we note that f ◦ a(−, x) is a constant function G → R taking every
element to f (x). Hence d( f ◦ a(−, x))1G = 0. The result follows from chain rule and
taking transposes. □

Corollary A.2. Suppose f : X → R is G-invariant, and let x ∈ X be a critical point. Then:

(1) For any g ∈ G, the point gx is a critical point of f , of the same type (local minimum,
local maximum, or saddle point) as x.

(2) For any ξ ∈ g, the infinitesimal action ξx belongs to the kernel of the Hessian of f at x:

∇2
x f
(
ξx
)
= 0

Sketch of proof. The first claim is immediate from the previous lemma and the fact that
ρ(g) is a diffeomorphism commuting with f . The first claim implies that:

∇ f ◦ a(−, x)(g) = ∇gx f = 0



14 IORDAN GANEV

for all g ∈ G. Hence the differential d( f ◦ a(−, x))1G . The second claim follows. □

A.4. Linear actions. Suppose X = Rn and the action of G is linear, so that ρ is a group
homomorphism G → GLn(R). Then we have:

∇gx f = ρ(g−1)T(∇x f ) ∇2
gx f = ρ(g−1)T(∇2

x f )ρ(g−1)

To be clear, the right-hand side of the first equation is the multiplication of the n by
n matrix ρ(g−1)T with the vector ∇x f ∈ Rn, while that of the second equation is the
multiplication of three n by n matrices. Two special cases are worth noting. If the action
of G is by orthogonal transformations, so that ρ factors through the orthogonal group
O(n), then ρ(g−1)T = ρ(g) for any g ∈ G, and we have:

∇gx f = ρ(g)(∇x f ) ∇2
gx f = ρ(g)(∇2

x f )ρ(g)−1

Another special case is when the action of G is symmetric, so that ρ(g) is a symmetric
matrix for every g ∈ G. Then ρ(g)T = ρ(g) and we have:

∇gx f = ρ(g−1)(∇x f ) ∇2
gx f = ρ(g−1)(∇2

x f )ρ(g−1)
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