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1. Introduction

In supervised statistical learning, one seeks to understand the relationship between a
predictor variable, often denoted x, and a response variable, often denoted y. The predictor
generally belongs to a vector space of some (finite) dimension, which we denote as Rnx .
The response either also belongs to a vector space or belongs to a finite set of classes. In
the former case, we are dealing with a regression problem, while in the latter case we are
dealing with a classification problem.

In either case, a common procedure to understand the relationship between the predictor
and the response is as follows:

(1) Collect observations (x1, y1), . . . , (xn, yn). This is the so-called training data One
assumes that these samples are independent. One also assumes they are identi-
cally distributed, so that the sampling method is sufficiently random and does
not prefer some observations over others.

(2) Based on the collected data, derive a model that assigns a response y to every
predictor x. For the purposes of these notes, we assume a fixed mechanism for
producing models from training data, such as linear regression, logistic regres-
sion, etc.

To introduce notation, let D = {(x1, y1), . . . , (xn, yn)} denote the collected data, and let

mD : {predictors} → {responses}

be the model produced by the training data D, which assigns responses to predictors
based on the data D. So, given a predictor x ∈ Rnx , we have its response mD(x). Our
focus will be:

Question: How can we evaluate the quality of the model mD?

1.1. Training error. One approach to answering the above question is to examine the
performance of the model on the training data. The general formula for this is:

Training error : Err(D) =
1
n ∑

i
Cost(yi, mD(xi))
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where Cost is a cost function that encodes the penalty when the sampled response yi
is sufficiently different from the estimated response mD(xi) for the sampled predic-
tor. For regression, one commonly takes the cost function to be the Euclidean dis-
tance, so that Cost(yi, mD(xi)) = |yi − mD(xi)|2. Then the error is the mean square er-
ror. For classification, the cost function may be taken to be the 0/1 function, defined as:
Cost(yi, mD(xi)) = 0 if yi = mD(xi) and 1 otherwise. Then the error is the misclassification
rate. In what follows, for concreteness, we these two common choices.

1.2. Test error. However, the training error has the limitation that it is based solely on
the observations that were used to produce the model mD. A better assessment of the
quality of a model would be to evaluate its performance on new sample, different from
those used to produce the model. In fact, it would be best to understand the performance
of the model on the space of all possible new samples.

To make some headway on this task, we examine what it means to sample a pair (x, y).
We imagine that there is a probability density function on such pairs:

p : {(predictor, response)} → [0, 1]

which controls the probability of sampling a given pair. Similarly, the training data is
drawn from the space of n-tuples of predictor-response pairs: {(predictor, response)}n.
The assumptions of independence and identical distribution imply that the training data
is sampled according to the n-fold density of p:

pn : {(predictor, response)}n → [0, 1], pn(D) =
n

∏
i=1

p(xi, yi)

where D = {(xi, yi)}n
i=1. We can now formulate the test error of the model mD at x as:

Errx =


ED,y(|mD(x)− y|2 | X = x) for regression

Pr(mD(x) 6= y | X = x) for classification

In other words, for regression, the test error at x is the expected distance between the
model value mD(x) and the response y, while for classifications, the test error at x is the
probability of a mismatch between the model’s classification mD(x) and the response y.
These quantities are computed considering all possible choices of training data D and
responses y. The former are sampled according to the conditional density of p given x,
while the latter are sampled according to the density pn. Note that the test error is a
theoretical quantity that can only be computed with knowledge of the full probability
density function p.

1.3. Noise, Variance, and Bias. In later sections, we relate the test error to the noise, the
variance, and the bias. For now, we give an intuitive summary of each of these quantities.
As with the test error, these are theoretical quantities that can only be computed precisely
through the density function.
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The noise at x is a measure of the variability of the response around the expected re-
sponse at x under the density p. For regression, the expected response is the expected
value of y given x, while for classification, the expected response is the class with the
highest conditional probability given x. With high noise, there is less of a deterministic
relationship between the prediction and the response. With low noise, the relationship
between the predictor and the response is stronger, and the expected label of x is likely
to occur.

The variance is a measure of the sensitivity of the model to the training data. With high
variance, the model will overfit the training data and there will be a wide gap between
the test error and the training error. With low variance, the model will be robust to
changes in the training data. The variance is related to the flexibility of the model class
from which mD is chosen. More flexible model classes have many models to choose
from; since the space of possible models is greater, the variance is generally greater.
Conversely, less flexible model classes have fewer models to choose from; a training data
set is more likely to produced a model close to the expected model.

The bias is a measure of how the model could possibly be expected do to model a real-
life situation. It encodes the inherent limitations of our model class, and (as with the
variance) is closely related to the flexibility of the model class. However, (unlike the
variance) the bias decreases with higher flexibility. Indeed, with a more flexible model
class, there is a greater possibility of finding a model in that class that fits the true
relationship between the predictor and response, to the extent that there is such a true
relationship. Conversely, with less flexible model classes, one may expect that there will
be no possible model within the class that effectively captures the relationship between
the predictor and response.

1.4. Bias-variance trade-off. The relationship between the bias, variance, and flexibility
is known as the bias-variance trade-off. To summarize:

• As the flexibility of the model class increases, the variance increases.
• As the flexibility of the model class increases, the bias decreases.

Generally speaking, while flexibility is low and increasing, the bias decreases more
quickly than the variance increases and the test error goes down. This is the under-
fitting regime. With high enough flexibility, the variance increases more quickly than the
bias decreases, and the test error goes up again. This is the overfitting regime. Hence, the
test error is a U-shaped curve as a function of the flexibility of the model class. In the
ideal situation, one seeks a level of flexibility at the trough of the test error curve, thus
minimizing the test error.
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2. Bias-Variance decomposition for regression

In this section, we work in the setting of regression with the mean square error. We show
that the test error can be decomposed into three parts: the noise, the variance, and the
bias.

2.1. Joint density and noise. As before, let Rnx be the space of predictors. Since we are
working in the setting of regression, the response variable also belongs to a vector space,
call it Rny . The joint probability density function is on the product of these two vector
spaces:

p : Rnx ×Rny → [0, 1]
The expected label is the function:

y : Rnx → Rny , x 7→ E(Y|X = x) =

∫
y yp(x, y)dy∫
y′ p(x, y′)dy′

The noise is the variability of a response from its expected label:

Noise(p) = Ex,y

[
(y− y(x))2

]
=

∫
x

∫
y
(y− y(x))2p(x, y)dydx

Hence, with high noise, there is less of a deterministic relationship between the pre-
diction and the response. With low noise, the relationship between the predictor and
the response is stronger. One may also consider the noise at x, which is defined as
Noisex = Ey(|y− y(x)|2 | X = x).

2.2. The model class. As above, suppose we have a procedure for producing a function
Rnx ×Rny from a (finite) collection of training data {(xi, yi)}. Formally, we have a model
selection function:

M :
∞⋃

n=1

(Rnx ×Rny)n → Fun (Rnx , Rny)

D 7→ mD

which (deterministically) returns a function mD : Rnx → Rny based on training data D.
Here

⋃∞
n=1 (R

nx ×Rny)n is the set of finite tuples {(xi, yi)} of any size1. The model class
of M is the set of all functions that can be modeled through this procedure. In other
words, the model class is the image of the functionM.

2.3. Expected classifier, bias, and variance. Fix n and recall that the density p gives
rise to a corresponding density on the n-sample training data is (Rnx ×Rny)n defined by
pn(D) = ∏n

i=1 p(xi, yi) for D = {(xi, yi)}n
i=1. The expected classifier produced by M is

given by taking the point-wise expectation of mD over all possible choices of training
data:

m : Rnx → Rny , x 7→ ED [mD(x)] =
∫

D
mD(x)pn(D)dD

1One may decide to quotient each Rnx ×Rny by the action of the symmetric group Sn.
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The variance of the classifier produced byM is the expected squared difference between
a classifier and the expected classifier, taken over all possible inputs:

Var(M, p) = ED,x

[
(mD(x)−m(x))2

]
The bias-squared of the classifier is the expected squared difference between the expected
classifier and the expected label, taken over all possible inputs:

Bias2(M, p) = Ex

[
(m(x)− y(x))2

]
2.4. Expected test error. The expected test error is the mean square error of a classifier
mD over all possible test pairs (x, y) and all possible training data:

Err(M, p) = ED,x,y

[
(mD(x)− y)2

]
Proposition 2.1. The expected test error decomposes as the sum of the variance, bias-squared,
and noise:

Err(M, p) = Noise(p) + Var(M, p) + Bias2(M, p)

Proof. We write:

(mD(x)− y)2 = (mD(x)−m(x) + m(x)− y(x) + y(x)− y)2

= (mD(x)−m(x))2 + (m(x)− y(x))2 + (y(x)− y)2 + cross terms

Thus, it suffices to show that the expected value of each of the cross terms is zero. For
example,

ED,x,y[(mD(x)−m(x))(m(x)− y(x))] = Ex,y[ED[mD(x)−m(x)](m(x)− y)]

= Ex,y[(ED[mD(x)]−m(x))(m(x)− y(x))]

= Ex,y[(m(x)−m(x))(m(x)− y(x))] = 0

The computation that ED,x,y[(mD(x)−m(x))(y(x)− y)] = 0 follows the exact same logic.
Finally,

ED,x,y[(mD(x)−m(x))(y(x)− y)] = Ex[(mD(x)−m(x))Ey[(y(x)− y) | X = x]]

= Ex[(mD(x)−m(x))(y(x)− Ey[y | X = x]) = 0

This completes the proof. �

2.5. Summary. We have three functions of x: y, m, and mD. Working relative to a point
x, the expected square difference between y and y is the noise, the expected square dif-
ference between y and m is the bias-squared, and the expected square difference between
m and mD is the variance. Hence, the variance is the sensitivity of the approximating
function to the training data, while the bias is the error from the inherent limitation of
the model class.



6 IORDAN GANEV

3. Bias-Variance decomposition for classification

We now turn our attention to the classification setting. In this case, we can compute
explicit expressions for the test error, noise, variance, and bias, but the decomposition of
the regression setting does not hold.

3.1. Joint density. The predictor is still assumed to be continuous and belonging to Rnx ,
while the response belongs to one of finitely many classes. More formally, let:

Ω = ΩY = {1, . . . , C}

be the possible responses. We have a density function on the space of predictor-response
pairs:

p : Rnx ×Ω→ [0, 1]

We denote by py(x) the conditional probability for each class y ∈ Ω given a value of the
predictor x ∈ Rnx , that is: conditional probabilities as py(x):

py : Rnx → [0, 1], py(x) := p(Y = y | X = x) =
p(x, y)

∑y′∈Ω p(x, y′)

Given x ∈ Rnx , the conditional probabilities define a probability measure on Ω where
the measure of {y} is py(x). The expected label of a given predictor value x ∈ Rnx is
defined as the class with the highest conditional probability. As a function:

y : Rnx → Ω, y(x) = argmax
y∈Ω

py(x)

Note that, in this setting of classification, argmaxy plays the role that the expected value
Ey played in the regression setting. Indeed, since the classes are not linear, the usual
mathematical notion of expected value generally does not make sense here.

3.2. Model. Similarly to the regression setting, suppose we have an algorithm that takes
as input a (finite) collection of training data {(xi, yi) ∈ Rnx ×Ω} and outputs an estimate
for the conditional probabilities. Formally, we have a function:

∞⋃
n=1

(Rnx ×Ω)n → Fun (Rnx , PrMeasure(Ω))

D 7→ [x 7→ [{y} 7→ p̂(D)
y (x)]]

that takes in training data and outputs a probability measure on Ω for every predictor
x ∈ Rnx . Going one step further, this procedure allows us to assign a class to each pre-
dictor by taking the label with the highest conditional probability estimate. In notation,
define:

mD : Rnx → Ω, x 7→ argmax
y∈Ω

p̂(D)
y (x)
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Thus, we have a model selection function

M :
∞⋃

n=1

(Rnx ×Ω)n → Fun(Rnx , Ω)

D 7→ mD

3.3. The space of training data. Fix n to be the number of training samples. As above,
the density p induces a density on the space of n-sample training data, namely, pn :
(Rnx ×Ω)n → [0, 1], with pn(D) = ∏n

i=1 p(xi, yi) for for D = {(xi, yi)}n
i=1. Using this

density function, for y ∈ Ω, we identify the following subset of the space of training
data:

Sy(x) = {D ∈ (Rnx ×Ω)n | mD(x) = y}
In other words, Sy(x) is the set of training data that produce a classifier assigning the
label y to x. For fixed x ∈ Rnx , the subsets {Sy(x)}y∈Ω form a partition of the space of
training data. Now set qy(x) to be the probability that the training data D lies in Sy(x)
given the predictor x and the class y. That is, we have:

qy : Rnx → [0, 1], qy(x) = Pr(D ∈ Sy(x) | X = x, Y = y)

We note that both Sy(x) and qy(x) depend on the model classM and the density p; we
suppress this additional notatin. Finally, we define the expected classifier as the function
assigning a predictor x to the class with the largest probability of being chosen by the
training data:

m : Rnx → Ω, m(x) = argmax
y∈Ω

qy(x) = argmax
y∈Ω

Pr(mD(x) = y)

3.4. Computation of probabilities. Fix a predictor value x ∈ Rnx . Define the error,
noise, variance, and squared bias at x as:

Errx(M, p) = Pr(y 6= mD(x) | X = x)

Noisex(M, p) = Pr(y 6= y(x) | X = x)

Varx(M, p) = Pr(m(x) 6= mD(x) | X = x)

Bias2
x(M, p) = Pr(m(x) 6= y(x) | X = x)

Proposition 3.1. Given x ∈ Rnx , we have:

Errx(M, p) = 1− ∑
y∈Ω

py(x)qy(x)

Noisex(p) = 1− py(x)(x) = 1−max
y

py(x)

Varx(M, p) = 1− qm(x)(x) = 1−max
y

qy(x)

Bias2
x(M, p) =

{
1 if y(x) 6= m(x)
0 else
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Proof. For readability, we suppress the notation (M, p). For the first claim, we compute:

Errx = Pr(y 6= mD(x) | X = x)

= ∑
y

Pr(y 6= mD(x) | X = x , Y = y)Pr(Y = y | X = x)

= ∑
y
(1− Pr(D ∈ Sy(x)))py(x) = ∑

y
(1− qy(x))py(x)

= 1−∑
y

py(x)qy(x)

For the second claim:

Noisex = Pr(y 6= y(x) | X = x) = ∑
y 6=y(x)

Pr(Y = y | X = x) = 1− py(x)(x)

For the third claim:

Varx = Pr(mD(x) 6= m(x) | X = x) = ∑
y 6=m(x)

Pr(D ∈ Sy(x) | X = x) = 1− qm(x)(x)

The last claim is immediate. �

3.5. Two class case. We examine the case of two classes in more detail.

Proposition 3.2. Suppose Ω = {0, 1}.For any x ∈ Rnx , we have:

(3.1) Errx(M, p) = Noisex(p) + |(p1(x)− p0(x))(Varx(M, p)− Bias2
x(M, p))|

Proof. Set p(x) = p1(x) = 1− p0(x) and q(x) = q1(x) = 1− q0(x). Then:

Errx = p(x) + q(x)− 2p(x)q(x)

Noisex = min(p(x), 1− p(x))

Varx = min(q(x), 1− q(x))

Bias2
x =

{
1 if p(x) ≤ 1/2 < q(x) or q(x) ≤ 1/2 < p(x)
0 otherwise

There are four cases:

(1) p(x) ≤ 1/2 and q(x) ≤ 1/2, so that Noisex = p(x), Varx = q(x), and Bias2
x = 0.

(2) p(x) ≤ 1/2 and q(x) > 1/2, so that Noisex = p(x), Varx = 1− q(x), and Bias2
x =

1.
(3) p(x) > 1/2 and q(x) ≤ 1/2, so that Noisex = 1− p(x), Varx = q(x), and Bias2

x =
1.

(4) p(x) > 1/2 and q(x) > 1/2, so that Noisex = 1− p(x), Varx = 1− q(x), and
Bias2

x = 0.

For each of these cases, a direct computation verifies that formula 3.1 holds. �
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We examine Equation 3.1 in more detail. Note that the squared bias is either 0 or 1,
depending on whether p(x) and q(x) lie on the same side of 1/2 or not, respectively. If
the squared bias is zero, then we have:

Errx = Noisex + |2p(x)− 1|Varx

Thus, decreasing the variance decreases the error. On the other hand, suppose the
squared bias is one, so that p(x) and q(x) lie on opposite sides of 1/2. Then, noting
that the variance is at most 1/2, we have:

Errx = Noisex + |2p(x)− 1|(1−Varx)

In this case, increasing the variance will lead to a decrease in the error.
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