
GEOMETRIC RELATIONAL ALGEBRA

IORDAN GANEV

Abstract. These notes illustrate an abstract take on relational algebra inspired by con-
structions from category theory and algebraic geometry. We define a category for every
header whose objects are relations with that header. Relational algebra operations such
as union, join, and product are functors between the appropriate categories. We also use
pushforwards and pull backs to give interpretations of aggregate functions, group by, and
window functions.

1. Introduction

The organization of data is fundamental to all empirical endeavors. A simple way to or-
ganize data is through the use of a rectangular table, where the columns specify different
attributes and each row records the attribute values of a single sample. This organiza-
tional approach is known as the relational model, and rows are often called ‘tuples’. In
what follows, we formulate this basic definition in somewhat more abstract terms; this
formulation will give us a general perspective on basic table manipulations.

2. Basic definitions

Let V be the set of atomic values; for our purposes, we take V = R to be the set of all
real numbers1, and consider tables whose entries are in V.

A header is a finite set of (distinct) strings. Each element of the header corresponds to a
column of our table; we refer to an element of the header as a column heading. An H-tuple
is a function H → V from a header H to the set V. Thus, an H-tuple is simply a row in
our table, and can represent a single sample. We denote the set of all H-tuples as VH or
[H → V].

A relation with header H is a function f : X → VH where X is a finite set, called the index
set. Thus, a relation is another name for a table: the elements of the index set X specify
the rows, and we have an H-tuple for every row. Given two relations f1 : X1 → VH

and f2 : X2 → VH with the same header H, a map of relations from f1 to f2 is a function

1One can generalize some of the constructions we present below to the case were V is the set of all
strings, Booleans, etc., or to distinguish between integers and floats. Some operations presented below
rely on the total ordering of the real numbers.

1

2 IORDAN GANEV

p : X1 → X2 between the index sets such that f2 ◦ p = f1. In other words, we require the
following diagram to commute:

X1 X2

VH

p

f1 f2

In this way, we obtain a category CH whose objects are relations with header H and
whose morphisms are maps of relations. Extracting the index set defines a forgetful
functor For : CH → FSet to the category of finite sets. Let Rel(H) be the set of equivalence
classes of relations with header H. We also write RelX(H) for the set of equivalence
classes of relations with header H and index set X.

3. Union

Recall the disjoint union functor on the category of finite sets:

ä : FSet× FSet→ FSet

For any headers H1 and H2, we describe a functor CH1 × CH2 → CH1∩H2 that extends the
disjoint union operation in the sense that the following diagram commutes:

(3.1)
CH1 × CH2 CH1∩H2

FSet× FSet FSet

For For
ä

To this end, first observe that any function H1 → V restricts to a function on the inter-
section H1 ∩ H2, and similarly for H2. Thus, we have restriction maps:

ρ1 : VH1 → VH1∩H2 and ρ2 : VH2 → VH1∩H2 .

Now let f1 : X1 → VH1 and f2 : X2 → VH2 be two relations. Then there is a natural2

induced map from the disjoint union of X1 and X2 to VH1∩H2 :

f1 ∪ f2 : X1 ä X2 → VH1∩H2

2It is ‘natural‘ in the sense of category theory, as it is induced from the universal property of the
coproduct X1 ä X2.

GEOMETRIC RELATIONAL ALGEBRA 3

Specifically, this map takes x ∈ Xi to ρi ◦ fi(x), for i = 1, 2, and fits into the following
commutative diagram:

X1 X2

X1 ä X2

VH1 VH2

VH1∩H2

f1 f2

f1∪ f2

ρ2 ρ2

The relation f1 ∪ f2 defines an object of CH1∩H2 . It is straightforward to check that the
assignment (f1, f2) 7→ f1 ∪ f2 is functorial. Hence, we obtain the (generalized) union
functor

∪ : CH1 × CH2 → CH1∩H2

making Diagram 3.1 commute.

In terms of tables, the union operation makes a new table whose columns are the com-
mon columns of the two tables and whose rows are all the (now truncated) rows of the
original two tables. Special cases:

• If H1 = H = H2, we obtain a functor ∪ : CH ×CH → CH matching the usual union
operation from database theory.

• If H1 ∩ H2 = ∅, we obtain the empty table for any pair of inputs:

∪ : CH1 × CH2 → C∅ = {∅}

4. Product

Recall the product functor on the category of finite sets:

× : FSet× FSet→ FSet

For any headers H1 and H2, we describe a functor CH1 × CH2 → CH1 ä H2 that extends the
product operation in the sense that the following diagram commutes:

(4.1)
CH1 × CH2 CH1∩H2

FSet× FSet FSet

For For

×

To this end, let f1 : X1 → VH1 and f2 : X2 → VH2 be two relations. Then there is a
natural induced map from the product of X1 and X2 to VH1 ×VH2 :

f1 × f2 : X1 × X2 → VH1 ×VH2

4 IORDAN GANEV

Specifically, this map takes the pair (x1, x2) to (f1(x1), f2(x2)) and fits into the following
commutative diagram:

X1 × X2

X1 X2

VH1 ×VH2

VH1 VH2

f1× f2

f1 f2

where the slanted maps are the natural projections. In other words, we concatenate
column headings and fill in the table in all possible ways from the original table. It is
straightforward to check that the assignment (f1, f2) 7→ f1 × f2 is functorial. Observing
that VH1 ä H2 ' VH1 ×VH2 , we obtain the product functor

× : CH1 × CH2 → CH1 ä H2

making Diagram 4.1 commute.

5. Linked join (fiber products)

Let H1 and H2 be headers, and recall the restriction maps ρi : VHi → VH1∩H2 from above.
Observe that the fiber product of the maps ρi can be identified with the space VH1∪H2 ,
that is, the following diagram is a pullback square:

VH1∪H2 VH2

VH1 VH1∩H2

ρ2

ρ1

Furthermore, given two relations f1 : X1 → VH1 and f2 : X2 → VH2 , we can consider the
fiber product of the maps ρi ◦ fi, namely:

X1 ×VH1∩H2 X2 = {(x1, x2) ∈ X1 × X2 | ρ1 ◦ f1(x1) = ρ2 ◦ f2(x2)}

In other words, this is the set of all pair of rows (one from the first table, one from the
second) that have the same entries on the common columns. This space fits into the
following pullback square:

X1 ×VH1∩H2 X2 X2

X1 VH1∩H2

ρ2◦ f2

ρ1◦ f1

GEOMETRIC RELATIONAL ALGEBRA 5

By universal properties of pullbacks, there is a natural map connecting these two fiber
products:

f1 ./ f2 : X1 ×VH1∩H2 X2 → VH1∪H2

The resulting table is known as the linked join of the original two tables. It contains all
the columns of the original two tables, but only those rows that are compatible on the
common columns. It is straightforward to check that the assignment (f1, f2) 7→ f1 ./ f2
is functorial. We obtain the linked join functor:

./: CH1 × CH2 → CH1∪H2

Note that it does not extend and operation on finite sets, since the fiber product depends
on the maps f1 and f2. Special cases:

• If H1 = H2 = H, we recover the usual intersection operation ∩ : CH × CH →
CH. In this case, the restriction maps ρi are identity maps, and the fiber product
becomes:

X1 ×VH X2 = {(x1, x2) ∈ X1 × X2 | f1(x1) = f2(x2)}.

and the linked join map X1 ×VH X2 → VH takes (x1, x2) to the common value
f1(x1) = f2(x2).

• If H1 ∩ H2 = ∅, then the union H1 ∪ H2 is a disjoint union H1 ä H2, and we
recover the product operation from above.

Remark 5.1. In practice, the linked join of two tables with no common column headings
is conventionally deemed to be the empty table, that is, their union. The product is
implemented separately.

6. Projection, Selection, Difference

6.1. Projection. Let H1 and H2 be headers. Given a function φ : VH1 → VH2 , we can
transform relations with header H1 into relations with header H2 by postcomposition.
Explicitly, if f : X → VH1 is a relation with header H1, then φ ◦ f : X → VH2 is a
relation with header H2. It is straightforward to check that the assignment f 7→ φ ◦ f
is functorial between the categories CH1 and CH2 . The resulting functor is known as the
projection corresponding to φ:

Projφ : CH1 → CH2

Thus, we see that functions VH1 → VH2 give rise to functors CH1 → CH2 .

6.2. Select. Let f : X → VH be a relation in CH. For any subset W ⊆ VH, we can
consider the relation f restricted to the preimage f−1(W) of W. Thus, we obtain a map
from the power set of VH to subobjects of f :

P(VH)→ SubObj(f), W 7→ [f−1(W)→ VH]

6 IORDAN GANEV

6.3. Difference. For any set Y, there is a difference operator:

diffY : Rel(H)→ Rel(H)

taking a relation f : X → VH to the restriction of f to X \ (X ∩ Y). This operator is not
functorial.

7. Pullback, Pushforward, Etc.

Throughout this section, H is a fixed header and all relations will have header H.

7.1. Pullback. We first explain how relations pull back under maps between the rows.
Let α : X → Y be a function between the finite sets X and Y. There is a pullback
operation:

α∗ : RelY(H)→ RelX(H), [α∗(g)] (x) = g(α(x))
which takes a relation g : Y → VH with index set Y to the relation g ◦ α : X → VH with
index set X. The push forward operation requires aggregation functions, which we now
discuss.

7.2. Aggregating functions.

7.2.1. Aggregating a single column. We denote the one-point set by {pt} and consider
relations Rel({pt}) with header equal to the one-point set. Such a relation is the same
as a function X → V; in other words, it is a table with a single column. The dual space
of Rel({pt})∗ is the set of functions from Rel(pt) to V. In other words, an element of
the dual space gives a function from XV to V for every finite set X. An element of the
dual space Rel({pt})∗ is known as an aggregating function. Thus, an aggregating function
FUN is a map:

FUN :
⋃

X finite set

VX → V

When V = R, examples include AVG, MIN, MAX, COUNT, SUM, etc.

7.2.2. Aggregating multiple columns. Let H be a header. The dual space to Rel(H) is de-
fined as Rel(H)∗ = (Rel(pt)∗)H. Thus, an element of the dual space is a choice of ag-
gregating function for every attribute in H. Note that there is no notion of an ‘index
set’ for an element of the dual space. We will use the same notation FUN for elements
of Rel(H)∗ as for elements of Rel({pt})∗; it will be clear from context which meaning is
intended. There is an evaluation map:

ev = 〈−,−〉 : Rel(H)∗ × Rel(H)→ VH

which applies an aggregating function to each column of a relation. In symbols, let f :
X → VH be a relation and let FUN = (FUN(h))h∈H be a tuple of aggregating functions,
one for every attribute in H. Then

〈 FUN , f 〉(h) = FUN(evh ◦ f)

GEOMETRIC RELATIONAL ALGEBRA 7

where evh : [H → V]→ V is the ‘evaluation at h’ map.

7.3. Aggregate push forward. We are now ready to explain the aggregate push for-
ward operation. For any aggregating function FUN ∈ Rel(H)∗, we have the FUN-
pushforward3 along α, given by:

αFUN
∗ : RelX(H)→ Relα(X)(H), [αFUN(f)] (y) =

〈
FUN , f

∣∣
α−1(y)

〉
.

The resulting relation has as its index set the image α(X) ⊆ Y of X in Y under α.

7.4. Group by. Suppose we have a relation f with attributes H. Suppose H1 and H2 are
disjoint subsets of H, so that we have the relations4 f1 ∈ Rel(H1) and f2 ∈ Rel(H2). Then
grouping f by H1 and aggregating H2 is a function:

Rel(H2)
∗ × RelX(H1 ä H2)→ Rel f1(X)(H1)

defined in terms of pushing forward f2 along f1 with a specified aggregating function
FUN ∈ Rel(H2)

∗:

(f1)
FUN
∗ (f2) (v) =

〈
FUN , f2

∣∣
f−1
1 (v)

〉
for v in the image f1(X) ⊆ VH1 .

7.5. Window functions. Recall that P(X) is the power set of X. Given a relation f ∈
RelX(H) and a subset X′ ⊆ X, we can restrict f to X′ to obtain a relation f

∣∣
X′ ∈ RelX′(H).

A window assignment is a choice of subset of X for every element of X, i.e., a map

Φ : X → P(X).

Given a relation, aggregating function, and window assignment, we obtain a new re-
lation which aggregates according to the windows. More precisely, we have a window
function:

Rel(H)∗ × RelX(H)× [X → P(X)]→ RelX(H)

taking (f , FUN, Φ) to the relation ΦFUN
(f) : X → VH sending x ∈ X to

〈
FUN , f

∣∣
Φ(x)

〉
∈

VH. Note that the index set X remains unchanged.

3The usual pushforward function operation on vector-valued functions on finite sets involves on sum-
ming over fibers, that is, α∗ : Relα(X)(H) with [α∗(f)] (y)(h) = ∑x∈α−1(y) f (x)(h). The general version
replaces summation by any aggregating function.

4More explicitly, for each x ∈ X, the function fi(x) : Hi → V is defined as the restriction of f (x) : H → V
to the subset Hi ⊆ H.

8 IORDAN GANEV

7.6. Pullback and window functions. Recall that relations pull back under maps be-
tween the rows: α : X → Y induces α∗ : Rel(Y)→ Rel(X). Such a map induces a window
assignment taking x to the fiber to which it belongs:

Φα : X → P(X); x 7→ α−1(α(x)).

One can show that ΦFUN
α = α∗αFUN

∗ . We also have a map:

Rel(H)∗ × RelX(H)× [X → Y]→ Relα(X)(H)

taking f , FUN, α to the relation taking y ∈ α(X) to
〈

FUN , f
∣∣
α−1(y)

〉
.

8. Summary

These notes provide a perspective on relational algebra and database operations inspired
by category theory and algebraic geometry. To summarize we, given headers H1 and H2,
we have the following binary operations:

Generalized Union ∪ : CH1 × CH2 → CH1∩H2

Product × : CH1 × CH2 → CH1 ä H2

Linked Join ./: CH1 × CH2 → CH1∪H2

Projection is a procedure that takes a function VH1 → VH2 and gives a functor CH1 → CH2 :

Projection [VH1 → VH2]→ Func(CH1 , CH2)

Selection is a method of associating subsets of VH with subobjects of any relation f :
X → VH with header H:

Selection P(VH)→ SubObj(f)

Fix a header H and focus on the category CH. A map of index sets α : X → Y induces:

Pullback α∗ : RelY(H)→ RelX(H)

Aggregate Pushforward αFUN
∗ : RelX(H)→ Relα(X)(H)

where FUN is an aggregating function. Grouping a relation by columns H1 and aggre-
gating columns H2 (disjoint from H1) is a function:

Group by Rel(H2)
∗ × RelX(H1 ä H2)→ Rel f1(X)(H1)

where Rel(H2)
∗ is the space of all possible aggregating functions on the columns H2.

Note that the index set changes to the image f1(X) ⊆ VH1 of the original index set X un-
der f1. Window functions take in an aggregating function, a relation, and an assignment
of a subset of X for any element of X; the output is a new relation on the same index set:

Window functions Rel(H)∗ × RelX(H)× [X → P(X)]→ RelX(H)

GEOMETRIC RELATIONAL ALGEBRA 9

9. Exercises

(1) Functoriality. Prove the functoriality of union, product, and linked join.

(2) Projection and union. Suppose H′ ⊆ H is a subheader of H. The inclusion i :
H′ ↪→ H induces a pullback map i∗ : VH → VH′ , and we have the corresponding
projection functor:

Proji∗ : CH → CH′ .
Let ∅H′ ∈ Rel(H′) be the empty relation. Taking the union of any relation in CH
with ∅H′ gives a functor: − ∪ ∅H′ : CH → CH′ . Verify that this functor coincides
with Proji∗ .

(3) Pullback and window functions. Recall that relations pull back under maps
between the rows: α : X → Y induces α∗ : Rel(Y) → Rel(X). Such a map induces
a window assignment taking x to the fiber to which it belongs:

Φα : X → P(X); x 7→ α−1(α(x)).

Verify that ΦFUN
α = α∗αFUN

∗ . Note that we also have a map:

Rel(H)∗ × RelX(H)× [X → Y]→ Relα(X)(H)

taking f , FUN, α to the relation taking y ∈ α(X) to
〈

FUN , f
∣∣
α−1(y)

〉
.

	1. Introduction
	2. Basic definitions
	3. Union
	4. Product
	5. Linked join (fiber products)
	6. Projection, Selection, Difference
	6.1. Projection
	6.2. Select
	6.3. Difference

	7. Pullback, Pushforward, Etc.
	7.1. Pullback
	7.2. Aggregating functions
	7.3. Aggregate push forward
	7.4. Group by
	7.5. Window functions
	7.6. Pullback and window functions

	8. Summary
	9. Exercises

