NOTES ON PRINCIPAL COMPONENT ANALYSIS

IORDAN GANEV

1. NOTATION

We use Einstein notation (link) for vectors and matrices. Specifically, suppose v is a
vector in RN. Unless specified otherwise, we consider v to be a column vector with
entries indicated by upper indices:

It will be clear from context whether the upper subscripts denote indices or exponents.
To save space, we may also write v as a tuple: v = (v',7?,...,9N). The mean of the

vector v is defined as:

1 &
mean(v) = — ) 0
N ~
i=1
The covariance of two vectors v and w in RY is defined as:
N

cov(v,w) = % ) (vi — mean(v)) (wi - mean(w))

i=1
2. THE DATA MATRIX X

Let X € RN*? be the data matrix. There are N samples, recorded as the rows of X,
and each sample has d features, corresponding to the columns of X. We assume N > d.
Following Einstein notation we denote matrix entries using upper indices for the rows
and lower indices for the columns:

1 1 1 1
IR IR *d
X X X X
X — 1 2 3 .d elRNxd
N N N N
X Xy X3 X4

In other words, x; denotes the (scalar) entry appearing in the i-th column and j-th row
of X,fori=1,...,Nand j =1,...,d. This is the measurement of the d-th feature of the
i-th sample. The covariance matrix* of X is a d by d matrix whose (j, k) entry is given by

'The covariance matrix can be computed in numpy via the command np.cov(X, ddof=0). Having
delta degrees of freedom (ddof) equal to d amounts to dividing by N — d instead of N. The default value
is ddof = 1, which gives an unbiased estimator for the population covariance.
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the covariance of the j-th and k-th columns of X:

Covmat(X){; = cov <(x]1, . .,x]N), (xi, .. .,x,?’))

3. THE MATRIX A
Let Idn« N be the identity N by N matrix, and let 1y be the N by N matrix of all ones.
Define a new N by N matrix as:

1
A =IdNxN — NHNXN

We leave the proof of the following lemma as an exercise:

Lemma 3.1. We have:

(1) The matrix A is symmetric, and A? = A.
(2) Each column of the matrix AX has mean zero.
(3) The covariance of two vectors v and w in RN is given by:

1
cov(v,w) = NVTAW
(4) The covariance matrix of X is given by:

1
Covmat(X) = ﬁXTAX

4. PRINCIPAL COMPONENT ANALYSIS

Lemma 3.1.2, shows that the matrix AX is ‘centered’, i.e., its column means are all zero.
Let AX = USVT be the singular value decomposition of AX. Hence, U € RN*N is an
orthogonal matrix, S € RN*4 g a diagonal matrix with non-negative, non-increasing
entries along the diagonal (the singular values ; of AX), and V € R%*¢ is an orthogonal
matrix. Terminology:

e The columns of V are the pincipal components of X.

Using Lemma 3.1.4, and the fact that UTU = Idy«y, one computes that the covariance
matrix of AXV is given by:

STs dxd
Covmat(AXV) = W - R

Since S is a diagonal matrix, we conclude that Covmat(AXV) is also a diagonal matrix.
Its i-th diagonal entry, denoted A;, is the square of the i-th singular value of AX, divided
2

by N, thatis, A; = JWI fori =1,...,d. Terminology:

e The dataset R = AXV is the centered, diagonalized version of X.
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Assume all singular values of X are positive (this is usually the case in practice). Then
let A=1/2 be the diagonal d by d matrix whose i-th entry is (A;)~1/2 = \/—lﬁ We compute

0,
that the covariance matrix of AXVA~1/2 is the identity matrix*:

Covmat(AXVA~Y2) =1d;,4

Terminology:

e The dataset Z = AXVA~12 ig the whitened version of X, with mean zero and
unit variance.

5. PROJECTIONS

Id 0
=[5

This is a projection matrix onto the first s components. We now:

Let s < d, and consider the matrix:

e Project the centered, diagonalized data to obtain AXV 7.
e Apply VT to obtain the projected centered, undiagonalized data: AXV 7t VT.
e Add the column means to obtain the s-truncated version of X:

. 1
X =AXVnr VT + IV X

Note that, if s = d, then X = X, and if s = 0, then X is the matrix of column means.
Otherwise, X is a lower-dimensional representation of X. One can show that X simplifies
to:

X =X —US (Idgyug — ms) V.
In other words, one zeros out the first s singular values of AX = USVT and subtract the
result from X.

Finally, we compute the error of this lower-dimensional representation. Let x() denote
the i-th row of X, representing the i sample. Similarly, let *) denote the i-th row of X.
Then the error is:
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2The same is true for AXVA~™1/2Q where Q € R**“ is any orthogonal matrix
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