NOTES ON PRINCIPAL COMPONENT ANALYSIS

IORDAN GANEV

1. NOTATION

We use Einstein notation (link) for vectors and matrices. Specifically, suppose \mathbf{v} is a vector in \mathbb{R}^N . Unless specified otherwise, we consider \mathbf{v} to be a column vector with entries indicated by upper indices:

$$\mathbf{v}_i = \begin{bmatrix} v^1 \\ v^2 \\ \vdots \\ v^N \end{bmatrix}$$

It will be clear from context whether the upper subscripts denote indices or exponents. To save space, we may also write **v** as a tuple: $\mathbf{v} = (v^1, v^2, \dots, v^N)$. The mean of the vector **v** is defined as:

$$\mathrm{mean}(\mathbf{v}) = \frac{1}{N} \sum_{i=1}^{N} v^{i}$$

The covariance of two vectors **v** and **w** in \mathbb{R}^N is defined as:

$$\operatorname{cov}(\mathbf{v}, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \left(v^{i} - \operatorname{mean}(\mathbf{v}) \right) \left(w^{i} - \operatorname{mean}(\mathbf{w}) \right)$$

2. The data matrix X

Let $X \in \mathbb{R}^{N \times d}$ be the data matrix. There are *N* samples, recorded as the rows of *X*, and each sample has *d* features, corresponding to the columns of *X*. We assume $N \ge d$. Following Einstein notation we denote matrix entries using upper indices for the rows and lower indices for the columns:

$$X = \begin{bmatrix} x_1^1 & x_2^1 & x_3^1 & \cdots & x_d^1 \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_d^1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^N & x_2^N & x_3^N & \cdots & x_d^N \end{bmatrix} \in \mathbb{R}^{N \times d}$$

In other words, x_j^i denotes the (scalar) entry appearing in the *i*-th column and *j*-th row of *X*, for i = 1, ..., N and j = 1, ..., d. This is the measurement of the *d*-th feature of the *i*-th sample. The covariance matrix¹ of *X* is a *d* by *d* matrix whose (j, k) entry is given by

¹The covariance matrix can be computed in numpy via the command np.cov(X, ddof=0). Having delta degrees of freedom (ddof) equal to *d* amounts to dividing by N - d instead of *N*. The default value is ddof = 1, which gives an unbiased estimator for the population covariance.

the covariance of the *j*-th and *k*-th columns of *X*:

$$\operatorname{Covmat}(X)_k^j = \operatorname{cov}\left((x_j^1, \dots, x_j^N), (x_k^1, \dots, x_k^N)\right)$$

3. The matrix A

Let $Id_{N \times N}$ be the identity *N* by *N* matrix, and let $\mathbb{1}_{N \times N}$ be the *N* by *N* matrix of all ones. Define a new *N* by *N* matrix as:

$$A = \mathrm{Id}_{N \times N} - \frac{1}{N} \mathbb{1}_{N \times N}$$

We leave the proof of the following lemma as an exercise:

Lemma 3.1. We have:

- (1) The matrix A is symmetric, and $A^2 = A$.
- (2) Each column of the matrix AX has mean zero.
- (3) The covariance of two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^N is given by:

$$\operatorname{cov}(\mathbf{v}, \mathbf{w}) = \frac{1}{N} \mathbf{v}^T A \mathbf{w}$$

(4) The covariance matrix of X is given by:

$$\operatorname{Covmat}(X) = \frac{1}{N} X^T A X$$

4. PRINCIPAL COMPONENT ANALYSIS

Lemma 3.1.2, shows that the matrix AX is 'centered', i.e., its column means are all zero. Let $AX = USV^T$ be the singular value decomposition of AX. Hence, $U \in \mathbb{R}^{N \times N}$ is an orthogonal matrix, $S \in \mathbb{R}^{N \times d}$ is a diagonal matrix with non-negative, non-increasing entries along the diagonal (the singular values σ_i of AX), and $V \in \mathbb{R}^{d \times d}$ is an orthogonal matrix. Terminology:

• The columns of *V* are the *pincipal components* of *X*.

Using Lemma 3.1.4, and the fact that $U^T U = Id_{N \times N}$, one computes that the covariance matrix of *AXV* is given by:

$$\text{Covmat}(AXV) = \frac{S^T S}{N} \in \mathbb{R}^{d \times d}$$

Since *S* is a diagonal matrix, we conclude that Covmat(AXV) is also a diagonal matrix. Its *i*-th diagonal entry, denoted λ_i , is the square of the *i*-th singular value of *AX*, divided by *N*, that is, $\lambda_i = \frac{\sigma_i^2}{N}$ for i = 1, ..., d. Terminology:

• The dataset R = AXV is the *centered*, *diagonalized* version of X.

Assume all singular values of X are positive (this is usually the case in practice). Then let $\Lambda^{-1/2}$ be the diagonal *d* by *d* matrix whose *i*-th entry is $(\lambda_i)^{-1/2} = \frac{\sqrt{N}}{\sigma_i}$. We compute that the covariance matrix of $AXV\Lambda^{-1/2}$ is the identity matrix²:

$$Covmat(AXV\Lambda^{-1/2}) = Id_{d \times d}$$

Terminology:

• The dataset $Z = AXV\Lambda^{-1/2}$ is the *whitened* version of *X*, with mean zero and unit variance.

5. Projections

Let $s \leq d$, and consider the matrix:

$$\pi_s = \begin{bmatrix} \mathrm{Id}_{s imes s} & 0 \\ 0 & 0 \end{bmatrix}$$

This is a projection matrix onto the first *s* components. We now:

- Project the centered, diagonalized data to obtain $AXV\pi_s$.
- Apply V^T to obtain the projected centered, undiagonalized data: $AXV\pi_s V^T$.
- Add the column means to obtain the *s*-truncated version of X:

$$\hat{X} = AXV\pi_s V^T + \frac{1}{N}\mathbb{1}_{N \times N}X$$

Note that, if s = d, then $\hat{X} = X$, and if s = 0, then \hat{X} is the matrix of column means. Otherwise, \hat{X} is a lower-dimensional representation of X. One can show that \hat{X} simplifies to:

$$\hat{X} = X - US \left(\mathrm{Id}_{d \times d} - \pi_s \right) V^T.$$

In other words, one zeros out the first *s* singular values of $AX = USV^T$ and subtract the result from *X*.

Finally, we compute the error of this lower-dimensional representation. Let $\mathbf{x}^{(i)}$ denote the *i*-th row of *X*, representing the *i* sample. Similarly, let $\hat{\mathbf{x}}^{(i)}$ denote the *i*-th row of \hat{X} . Then the error is:

$$\begin{aligned} \operatorname{Error} &= \frac{1}{N} \sum_{i=1}^{N} \| \mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)} \|^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)})^T (\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)}) \\ &= \frac{1}{N} \operatorname{Trace} \left(\left((X - \hat{X})^T (X - \hat{X}) \right) \right) \\ &= \frac{1}{N} \operatorname{Trace} \left(\left(US \left(\operatorname{Id}_{d \times d} - \pi_s \right) V^T \right)^T \left(US \left(\operatorname{Id}_{d \times d} - \pi_s \right) V^T \right) \right) \\ &= \frac{1}{N} \operatorname{Trace} \left(S^T S - S^T S \pi_s \right) = \sum_{i=s+1}^{d} \lambda_i \end{aligned}$$

²The same is true for $AXV\Lambda^{-1/2}Q$ where $Q \in \mathbb{R}^{d \times d}$ is any orthogonal matrix