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1. Notation

We use Einstein notation (link) for vectors and matrices. Specifically, suppose v is a
vector in RN. Unless specified otherwise, we consider v to be a column vector with
entries indicated by upper indices:

vi =


v1

v2

...
vN


It will be clear from context whether the upper subscripts denote indices or exponents.
To save space, we may also write v as a tuple: v = (v1, v2, . . . , vN). The mean of the
vector v is defined as:

mean(v) =
1
N

N

∑
i=1

vi

The covariance of two vectors v and w in RN is defined as:

cov(v, w) =
1
N

N

∑
i=1

(
vi −mean(v)

) (
wi −mean(w)

)
2. The data matrix X

Let X ∈ RN×d be the data matrix. There are N samples, recorded as the rows of X,
and each sample has d features, corresponding to the columns of X. We assume N ≥ d.
Following Einstein notation we denote matrix entries using upper indices for the rows
and lower indices for the columns:

X =


x1

1 x1
2 x1

3 · · · x1
d

x2
1 x2

2 x2
3 · · · x1

d
...

...
... . . . ...

xN
1 xN

2 xN
3 · · · xN

d

 ∈ RN×d

In other words, xi
j denotes the (scalar) entry appearing in the i-th column and j-th row

of X, for i = 1, . . . , N and j = 1, . . . , d. This is the measurement of the d-th feature of the
i-th sample. The covariance matrix1 of X is a d by d matrix whose (j, k) entry is given by

1The covariance matrix can be computed in numpy via the command np.cov(X, ddof=0). Having
delta degrees of freedom (ddof) equal to d amounts to dividing by N − d instead of N. The default value
is ddof = 1, which gives an unbiased estimator for the population covariance.
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the covariance of the j-th and k-th columns of X:

Covmat(X)
j
k = cov

(
(x1

j , . . . , xN
j ), (x1

k , . . . , xN
k )
)

3. The matrix A

Let IdN×N be the identity N by N matrix, and let 1N×N be the N by N matrix of all ones.
Define a new N by N matrix as:

A = IdN×N −
1
N

1N×N

We leave the proof of the following lemma as an exercise:

Lemma 3.1. We have:

(1) The matrix A is symmetric, and A2 = A.
(2) Each column of the matrix AX has mean zero.
(3) The covariance of two vectors v and w in RN is given by:

cov(v, w) =
1
N

vT Aw

(4) The covariance matrix of X is given by:

Covmat(X) =
1
N

XT AX

4. Principal Component Analysis

Lemma 3.1.2, shows that the matrix AX is ‘centered’, i.e., its column means are all zero.
Let AX = USVT be the singular value decomposition of AX. Hence, U ∈ RN×N is an
orthogonal matrix, S ∈ RN×d is a diagonal matrix with non-negative, non-increasing
entries along the diagonal (the singular values σi of AX), and V ∈ Rd×d is an orthogonal
matrix. Terminology:

• The columns of V are the pincipal components of X.

Using Lemma 3.1.4, and the fact that UTU = IdN×N, one computes that the covariance
matrix of AXV is given by:

Covmat(AXV) =
STS
N
∈ Rd×d

Since S is a diagonal matrix, we conclude that Covmat(AXV) is also a diagonal matrix.
Its i-th diagonal entry, denoted λi, is the square of the i-th singular value of AX, divided

by N, that is, λi =
σ2

i
N for i = 1, . . . , d. Terminology:

• The dataset R = AXV is the centered, diagonalized version of X.
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Assume all singular values of X are positive (this is usually the case in practice). Then
let Λ−1/2 be the diagonal d by d matrix whose i-th entry is (λi)

−1/2 =
√

N
σi

. We compute
that the covariance matrix of AXVΛ−1/2 is the identity matrix2:

Covmat(AXVΛ−1/2) = Idd×d

Terminology:

• The dataset Z = AXVΛ−1/2 is the whitened version of X, with mean zero and
unit variance.

5. Projections

Let s ≤ d, and consider the matrix:

πs =

[
Ids×s 0

0 0

]
This is a projection matrix onto the first s components. We now:

• Project the centered, diagonalized data to obtain AXVπs.
• Apply VT to obtain the projected centered, undiagonalized data: AXVπsVT.
• Add the column means to obtain the s-truncated version of X:

X̂ = AXVπsVT +
1
N

1N×NX

Note that, if s = d, then X̂ = X, and if s = 0, then X̂ is the matrix of column means.
Otherwise, X̂ is a lower-dimensional representation of X. One can show that X̂ simplifies
to:

X̂ = X−US (Idd×d − πs)VT.
In other words, one zeros out the first s singular values of AX = USVT and subtract the
result from X.

Finally, we compute the error of this lower-dimensional representation. Let x(i) denote
the i-th row of X, representing the i sample. Similarly, let x̂(i) denote the i-th row of X̂.
Then the error is:

Error =
1
N

N

∑
i=1
‖x(i) − x̂(i)‖2 =

1
N

N

∑
i=1

(x(i) − x̂(i))T(x(i) − x̂(i))

=
1
N

Trace
((

X− X̂
)T

(X− X̂)
)

=
1
N

Trace
((

US (Idd×d − πs)VT
)T (

US (Idd×d − πs)VT
))

=
1
N

Trace
(

STS− STSπs

)
=

d

∑
i=s+1

λi

2The same is true for AXVΛ−1/2Q where Q ∈ Rd×d is any orthogonal matrix
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