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1. Introduction

Principal component analysis is a technique for finding a new ordered basis (or partial
basis) of the predictor space in such a way that most of the variability in the data can be
captured in fewer dimensions. In these expository notes, we first provide a formulation
of principal component analysis from the point of view of finding directions that maxi-
mize variability. We then explain the relationship between principal component analysis
and the singular value decomposition.

2. Formulation

Let X ∈ Rn×p be the matrix of data. The number of columns is the number of predictors
(i.e., the dimension of the predictor space), while the number of rows is the number of
samples. For simplicity, we shift the data so that the columns have mean zero. We also
assume that n ≥ p, so there are more samples than predictor dimensions. Let xi be the
i-th row of X, for i = 1, . . . , n.

Definition 2.1. For a unit vector w ∈ Rp, the variability of X in the direction of w is defined
as ∑n

i=1(xi · w)2.

How to interpret this equation? The projection of xi onto the span of w is a vector
with norm given by the dot product xi · w. Thus, if we if we project all the samples
onto the span of w, we obtain a one-dimension collection of sample data {x1 · w, x2 ·
w, . . . , xn . . . w}. The assumption that the mean of the columns is zero implies that the
mean of these values is also zero. Hence, the sample variance is proportional to:

Sample variance of X in Span(w) ∝
n

∑
i=1

(xi · w)2

For our purposes, we the averaging factor of 1/(n− 1) is irrelevant, so we use the term
variability for the sum ∑n

i=1(xi · w)2.

Definition 2.2. The first principal component of X is a unit vector w(X)
1 ∈ Rp that maximizes

the variance of X in the direction of w. That is:

w(X)
1 = arg max

|w|=1

n

∑
i=1

(xi · w)2

1
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For k = 2, . . . , p, a k-th principal component w(X)
k of X is defined recursively as according

first principal component of the matrix:

X− X
k−1

∑
j=1

w(X)
j

(
w(X)

j

)T

Note that principal components are not be unique; if w(X)
k is a k-th principal component

of X, then −w(X)
k is also a k-th principal component. Generically, however, the principal

components will be uniquely defined up to sign. As we discuss below, this is the case
when the singular values of X are all distinct.

3. Relation to the Singular Value Decomposition

We now relate the principal components to the singular value decomposition. Let X =
UΣWT be the singular value decomposition of X, so that U ∈ Rn×n and W ∈ Rp×p

are orthogonal matrices, and Σ is a diagonal matrix with non-negative diagonal entries,
known as the singular values of X, ordered in non-increasing order σ1 ≥ σ1 ≥ · · · ≥ σp.
(Note that we have assumed n ≥ p.)

Proposition 3.1. For k = 1, . . . , p, the k-th column of W is a k-th principal component of X.
The variability of X in the direction of any k-th principal component is the square of the k-th
singular value: σ2

k .

Proof. The first principal component is:

w(X)
1 = arg max

|w|=1

n

∑
i=1

(xi · w)2 = arg max
|w|=1

wTXTXw

Let wk be the k-th column of W. This is known as a right singular vector of X cor-
responding to the singular value σk. Then one easily sees, using the singular value
decomposition, that wT

k XTXwk = σ2
k . Note that the columns of W form an orthonor-

mal basis of Rp, so any unit vector w ∈ Rp can be written as a linear combination
w = ckwk of the columns of W with ∑k c2

k = 1. With this notation, we seek to maximize
wTXTXw = ∑k c2

kσ2
k as a function of the ck, with the constraint ∑k c2

k = 1. As simple
computation with Lagrange multipliers shows that this quantity is maximized when
c1 = 1 and ck = 0 for k 6= 1. In other words, the first column w1 of W is a first principal
component.

For k > 1, first note that the p× p matrix WTwkwT
k has all rows zeros except for the k-th

row, which is wT
k . Using this fact, one uses the singular value decomposition of X to show

that the first p− k + 1 singular values of the matrix X− X ∑k−1
j=1 wjwT

j are σk, σk+1, . . . , σp,
with corresponding right singular vectors wk, wk+1, . . . , wp (the remaining singular val-
ues are zero). The result follows easily; we omit the remaining details. �
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4. Alternative Definition

Definition 4.1. A first principal component for X is any vector that satisfies the following
equivalent conditions:

(1) w = argmaxw∈Rp
wT XT Xw

wTw
(2) w = argmaxw∈Rp ∑n

i=1
( xi·w

w·w
)2

(3) w is a right singular vector of X with maximal singular value.
(4) w is an eigenvector of XTX with maximal norm eigenvalue.
(5) w is the first column of Q, where X = PΣQT is a singular value decomposition of

X, ordered so that the diagonal entries of Σ are non-decreasing.

Note that the singular values of X are the squares of the eigenvalues of the real symmet-
ric matrix XTX.

5. Appendix: The Spectral Theorem

Here is a special case of the Spectral Theorem:

Proposition 5.1. Let A ∈ Rn×n be a real symmetric matrix, so AT = A. Then there exists an
orthogonal matrix Q ∈ O(n) and real numbers λ1, . . . , λn ∈ R such that:

A = Q ·Diag (λ1, . . . , λn) ·QT

In other words, A is diagonalizable with real eigenvalues, and the columns of Q form
an orthonormal eigenbasis.

Sketch of proof. We proceed by induction on n. The base case of n = 1 is immediate. For
n > 1, let λ ∈ C be an eigenvalue of A. We argue that λ ∈ R. Indeed, let v ∈ Cn be any
unit eigenvector for A with eigenvalue λ. Then vTv = 1 and Av = λv. We observe that:

λ = vT Av = vT ATv = vT Av
T
= λ

It follows that λ is real. Now, the square matrix A − λIn is real and non-invertible.
Hence, there exists a unit vector w ∈ Rn in the kernel of this matrix. The vector w is a
real eigenvector for A with eigenvalue λ. Since we took w to be a unit vector, we may
extend w to an orthogonal matrix:

Q1 =
[
w P1

]
where P1 ∈ Rn×(n−1) has orthonormal columns. One computes:

QT
1 AQ1 =

[
λ 0
0 PT

1 AP1

]
where the columns and rows are blocked as 1+ (n− 1). Since PT

1 AP1 is a real symmetric
matrix, the result now follows from the induction hypothesis. �
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