
NOTES ON BACKPROPOGATION

IORDAN GANEV

Contents

1. Introduction 1

2. Neural networks 2

3. Main result 4

4. Batches 6

5. Exercises 9

Appendix A. Variations of the algorithm 10

1. Introduction

These notes are an exploration of the backpropogation algorithm for computing the
gradient of a loss function on the parameter space of a neural network.

1.1. What is a neural network? We view a neural network as a sequence of vector
spaces, known as ‘layers’, together with (1) a sequence of affine maps between the suc-
cessive layers, and (2) a non-linear activation applied to each layer. The composition of
these maps is known as the feedforward function of the network. We give a mathemati-
cal formulation of neural networks and their parameter spaces in Section 2; for now, we
note that the parameters of a neural network consist of a weight matrix and bias vector
for each affine map; changing these parameters alters the feedforward function.

1.2. Gradient descent. Fitting a neural network model to labeled sample data amounts
to finding parameters for which the feedforward function reproduces the labels from
the inputs as closely as possible. More precisely, one defines a loss function on the
parameter space based on the sample data, and seeks parameters that minimize this loss
function. Gradient descent is a powerful technique to locate such a minimum; it consists
of iteratively applying the following steps: take the current set of values of parameters,
compute the gradient of the loss at those parameter values, and update the parameters
by subtracting a (small) multiple of the gradient from the current one. This process is
known as ‘training’ the neural network.

1

2 IORDAN GANEV

1.3. Backpropogation. Gradient descent is most effective when the gradient of the loss
function has a closed from expression, or is otherwise straightforward to compute. The
backpropogation algorithm contributes to the gradient descent process by providing an
efficient way of computing the gradient at a set of parameter values. We now give a brief
summary of the algorithm, which consists of a forward pass and a backward pass.

The forward pass takes the input data and proceeds iteratively through the layers; for
each layer, one computes and caches the intermediate feature vector resulting from the
input data as well as the Jacobian matrix of the layer’s activation function.

The backward pass uses the cached objects from the forward pass to iteratively compute
gradients of the loss with respect to the intermediate feature vectors starting with the
last feature vector and moving inwards. The backward pass also computes the gradient
of the loss function with respect to each weight matrix and bias vector; these are given
directly in terms of the gradients of loss with respect to the feature vectors, and also
require the feature vectors cached in the forward pass. Due to the combination of a for-
ward caching pass and a backward pass, the backpropogation algorithm can be regarded
as an example of dynamic programming.

1.4. Outline of these notes. In these notes, we first set the notation for neural networks
(Section 2) before providing the theoretical justification for backpropogation (Proposi-
tion 3.1 of Section 3). The key tool behind the proof is the multivariate version of the
chain rule.We also give an explicit pseudo-code implementation of backpropogation (Al-
gorithm 1). We then turn our attention to backpropogation in batches (Section 4) and
extend the main result to batches (Proposition 4.1). We include a list of exercises (Section
5), and close with an appendix on alternative implementations of the backpropogation
algorithm (Appendix A).

1.5. Notation. We denote the space of m by n matrices by Rm×n. We use the symbol
@ for matrix multiplication, including multiplying a matrix with a vector. We use the
symbol ◦ for function composition. Unless specified otherwise, we identify Rn with
Rn×1 so that a vector v ∈ Rn will be assumed to be a column vector. Its transpose vT

is a row vector, that is, an element of R1×n. Let F : Rn → Rm be a function which is
differentiable at x = (x1, . . . , xn) ∈ Rn. Recall that the Jacobian matrix dFx of F at x is
the m by n matrix of partial derivatives

∂Fj
∂xi

, where j = 1, . . . , m and i = 1, . . . , n. If m = 1,
the gradient ∇xF of F at x is the column n-vector with i-th entry equal to the partial
derivative ∂F

∂xi
. Hence, the gradient is the transpose of the Jacobian: ∇xF = (dFx)

T.

2. Neural networks

2.1. The parameter space. Consider a neural network with L ≥ 1 layers, input dimen-
sion n0, output dimension nL, and hidden dimensions given by n1, . . . , nL−1. For con-
venience, we group the dimensions into a tuple n = (n0, n1, . . . , nL). The parameters

NOTES ON BACKPROPOGATION 3

of such a network consist of a n` × n`−1 weight matrix W` and an n`-dimensional bias
vector b` for every layer ` = 1, . . . , L. The space of all possible parameters for a network
with dimension vector n is given as the following vector space:

Param(n) = Rn1×n0 ×Rn2×n1 × · · · × ×RnL×nL−1 ×Rn1 ×Rn2 × · · · ×RnL .

We write an element therein as a pair θ = (W, b) of tuples W = (W1, . . . , WL) and
b = (b1, . . . , bL), so that W` ∈ Rn`×n`−1 and b` ∈ Rn` for ` = 1, . . . , L. When n is clear
from context, we write simply Param for the parameter space.

2.2. Activation functions. Fix a piecewise differentiable activation function σ` : Rn` →
Rn` for each ` = 1, . . . , L. When necessary, we set σ0 to be the identity function on Rn0 .
The activations are conventionally be pointwise, which means that a single function R→
R is applied to every coordinate of Rn` . However, we do not require this assumption. In
what follows, we will be interested in differentiating each activation functions to form
the associated Jacobian matrix d(σ`)z ∈ Rn`×n` at a point z ∈ Rn` .

2.3. Feedforward functions. Given parameters θ ∈ Param and activations σ`, we define
the partial feedforward functions Fθ,` : Rn0 → Rn` recursively:

Fθ,`(x) = W` @ (σ`−1 ◦ Fθ,`−1(x)) + b`

for ` = 1, . . . , L, with Fθ,0(x) = x. The full feedforward function Fθ : Rn0 → RnL is given
by applying the last activation the final partial feedforwrad function, i.e, Fθ = σL ◦ Fθ,L

2.4. Loss functions. We fix a differentiable cost function C : RnL ×RnL → R, such as
mean square error or cross-entropy. The loss function L of our model is defined as:

L : Param×Rn0 ×RnL → R, L(θ, (x, y)) = C(Fθ(x), y).(2.1)

where Rn0 ×RnL is the space of all possible training data pairs. In other words, given
parameters θ and a sample (x, y), the associated loss is the value of the cost function
comparing y ∈ RnL to the output Fθ(x) of the neural network with parameters θ evalu-
ated at x ∈ Rn0 . We also have the `-th partial loss function L` : Rn` → R defined using
reverse recursion as

L`(z) =
{

C(σL(z), y) for ` = L
L`+1 (W`+1 ◦ σ`(z) + b`+1) for ` = L− 1, . . . , 0

This recursive definition is similar to that of the partial feedforward functions Fθ,`; the
distinction is that we use reverse recursion starting with the last layer to define the
partial loss functions. By abuse of notation, we write ∇zL for the gradient ∇zL` of L`
at z ∈ Rn` .

4 IORDAN GANEV

3. Main result

3.1. Statement. To state the main result, we fix x ∈ Rn0 , y ∈ RnL , and θ ∈ Param. We
also fix an activation function σ` : Rn` → Rn` for each layer. For ` = 1, . . . , L, set:

z` := Fθ,`(x) ∈ Rn` `-th pre-activation feature vector

a` := σ`(z`) ∈ Rn` `-th post-activation feature vector

ŷ := Fθ(x) = σ(zL) ∈ RnL the output of the network

Jac` := d(σ`)z` ∈ Rn`×n` Jacobian matrix of the activation

To be clear, Jac` is the Jacobian matrix of the activation σ` differentiated at the pre-
activation feature vector z`. In the statement of the following proposition, ∇ŷC(−, y)
denotes the gradient of the cost function as a function of the predicted value ŷ, with the
true value y fixed.

Proposition 3.1. Fix a sample point (x, y) ∈ Rn0 ×RnL and parameters θ ∈ Param. Using
notation defined above, we have, for ` = 1, . . . L:

∇zLL = JacT
L @ ∇ŷC(−, y)(3.1)

∇z`−1L = JacT
`−1 @ WT

` @ ∇z`L(3.2)

∇W`
L = ∇z`L @ aT

`−1(3.3)
∇b`L = ∇z`L(3.4)

3.2. Proofs. We prove each of the claims in turn.

Proof of Equation 3.1. In the case ` = L, the partial loss function is LL = C(−, y) ◦ σL, so
that the differential of LL at zL is given by:

d (LL)zL
= d (C(−, y) ◦ σL)zL

= d (C(−, y))ŷ @ d(σL)zL

where we use chain rule and the fact that ŷ = σL(zL). Since the gradient is the transpose
of the differential, taking transposes yields Equation 3.1. �

Proof of Equation 3.2. Let ` ∈ {L, . . . , 1}. Then the differential of L`−1 as z`−1 is given by:

d (L`−1)z`−1
= d [L` (W` ◦ σ`−1(z`−1) + b`)]z`
= d [L` ◦ [a 7→ (W`a + b`)] ◦ σ`−1]z`−1

= d (L`)z`
@ W` @ d(σ`−1)z`−1

where we use chain rule, the definition of z`+1 and the fact that the differential of an
affine linear map at any point is given by the linear part1. Taking transposes yields
Equation 3.2. �

1The affine linear map in this case is Rn`−1 → Rn` taking a to W` @ a + b`, and the linear part is W`.

NOTES ON BACKPROPOGATION 5

Proof of Equations 3.3 and 3.4. First note that the following diagram commutes:

(3.5)
Rn`×n`−1 Rn`

Param R

φ

L`
L

where the left vertical map is the natural inclusion, and φ(M) = M @ a`−1 + b`. The
latter map is affine linear and its differential at any point is given by right multiplica-
tion by a`−1 (See Exercise 3). Hence, the transpose of the differential is given by right
multiplication by the transpose aT

`−1 of a`−1, that is:

dφT(v) = v @ aT
`−1

for any v ∈ Rn` . Observe that the left-hand-side of Equation 3.3 is the gradient at W`

of the ‘down then across’ composition in Diagram 3.5. Hence, it is also equal to the
gradient at W` of the ‘across then down’ composition, and we have:

∇W`
L = ∇W`

[L` ◦ φ] = (dφ)T (∇z`L`) = ∇z`L` @ aT
`−1.

The argument for Equation 3.4 is similar; in fact simpler. �

Remark 3.2. We note that if σ` is pointwise, then the Jacobian matrix Jac` is a diagonal
matrix. We write σ′`(z`) ∈ Rn` for the vector formed by applying the derivative σ′` to each
coordinate in z`. In this pointwise case, Equation 3.2 can be written as the Hadamard
product of the n`−1 vectors σ′(z`−1) and WT

` @ ∇z`L.

3.3. Algorithm. In Algorithm 1, we use the equations of Proposition 3.1 to formulate an
explicit algorithm that computes the gradients of the loss function using backpropoga-
tion. Note that the gradient ∇θL(−, (x, y)) is an element of Param, so has a coordinate
for each W` and each b`.

Corollary 3.3. Fix a sample point (x, y) ∈ Rn0 ×RnL and parameters θ ∈ Param. With these
inputs, Algorithm 1 returns the gradient ∇θL(−, (x, y)) of the loss function L(−, (x, y)) at θ.

Proof. Fix x ∈ Rn0 , y ∈ RnL , and θ ∈ Param. The definitions of z` and Jac` given
above match the definitions of the corresponding variables in Algorithm 1 (Lines 3 and
5). Also, the gradient ∇z`L = ∇z`L` of L` at z` corresponds to the variable grad_z in
Algorithm 1. Now, Equation 3.1 matches Line 6 in Algorithm 1, Equation 3.2 matches
Line 8, Equation 3.3 matches Line 9, and Equation 3.4 matches Line 10. The claim follows
by inspection. �

In the pseudo-code of Algorithms 3 and 4 (appearing in Appendix A), we provide al-
ternative implementations of backpropogation. Specifically, Algorithm 3 uses only the
post-activation feature vectors, while Algorithm 4 uses both the pre- and post-activation
feature vectors.

6 IORDAN GANEV

Algorithm 1: Computing Gradients Using Back Propagation
inputs: sample point (x, y) ∈ Rn0 ×RnL ,

weights W = (W` ∈ Rn`×n`−1)
L
`=1 ,

activations (σ` : Rn` → Rn`)L
`=1

1 z0 ← x

// Forward propagation
2 for `← 1 to L do
3 z` ←W` @ σ`−1(z`−1) + b` // feature vector
4 Jac` ← Jacobian (σL, z`) // Jacobian matrix
5 end

// Back propagation
6 grad_zL ← JacT

L @ Gradient (C(−, y), σL(xL)) // gradient w.r.t. zL
7 for `← L to 1 do
8 grad_z`−1 ← JacT

`−1 @ (W`)
T @ grad_z` // gradient w.r.t. z`

9 grad_W` ← grad_z` @ (σ`−1(z`−1))
T // gradient w.r.t. W`

10 grad_b` ← grad_z` // gradient w.r.t. b`
11 end

12 return: gradient (grad_W` , grad_b`)
L
`=1

4. Batches

We now adapt backpropogation to the setting of working with a batch of N data points.

4.1. Batch size first. Suppose we have samples (x1, y1), . . . , (xN, yN) where each (xi, yi)
belongs to Rn0 ×RnL . It is conventional to package these samples into matrices using
the ‘batch size first’ convention:

X ∈ RN×n0 and Y ∈ RN×nL

where the i-th row of the matrix X is X[i] = xT
i and similarly for Y. This convention

may be less intuitive than the ‘batch size last’ convention where X would have size n0×
N; indeed the ‘batch size first’ convention requires more adjustments to our previous
discussion. However, it is common enough that it merits discussion.

4.2. Notation and result. For fixed parameters θ and input batch X ∈ RN×n0 , we set
Z0 = A0 = X and recursively define the `-th pre- and post-activation feature matrix Z`

and A`, respectively, as:

Z` = A`−1 @ WT
` + 1N @ bT

` ∈ RN×n`

A` = σ` (Z`) ∈ RN×n` ∈ RN×n`

NOTES ON BACKPROPOGATION 7

for ` = 1, . . . , L, where each activation σ` is applied to the rows, and 1N is the column
vector of all ones in RN. Note that 1N @ bT

` is an N × n` matrix, each of whose rows is a
copy of (the transpose of) the vector b` ∈ Rn` . Hence, we have a feedforward function2

F̃θ : RN×n0 → RN×nL

taking X to the matrix of predictions Ŷ := AL ∈ RN×nL . For each layer ` = 1, . . . , L
and each sample i = 1, . . . , N, set Jaci,` ∈ Rn`×n` to be the Jacobian of the activation
σ` : RnL → RnL at the i-th row Z`[i] of Z` ∈ RN×n` .

Next, given a cost function C : RnL ×RnL → R, define the extended cost function by
summing C over the pairs of input rows:

C̃ : RN×nL ×RN×nL → R, (U, V) 7→
N

∑
i

C(U[i], V[i])

where U[i] and V[i] are the i-th rows of the N × nL matrices U and V, respectively. As
in the single sample case, our sample data (X, Y) gives rise to a loss function

L = L(X,Y) : Param→ R, θ 7→ C̃(F̃θ(X), Y).

For every layer `, is a partial loss function L̃` : RN×n` → R which first applies the
remainder of the feedforward function with parameters θ (sending Z` to F̃θ(X) = Ŷ in
our notation), and then applies the cost function C̃(−, Y). We abbreviate the gardient
∇Z`
L̃` of the partial loss function L̃` at Z` by simply ∇Z`

L; this is an N by n` matrix.

Adapting the proof of Proposition 3.1 one can prove the following:

Proposition 4.1. Fix a batch of sample data X ∈ RN×n0 and Y ∈ RN×nL , and parameters
θ ∈ Param. Using the notation [i] to denote the i-th row of a matrix, we have:

(∇ZLL)[i] = ∇Ŷ[i]C(−, Y[i]) @ Jaci,L(4.1)

(∇Z`−1L)[i] = (∇Z`
L)[i] @ W` @ Jaci,`−1(4.2)

∇W`
L =

(
∇Z`
L
)T @ A`−1(4.3)

∇b`L =
(
∇Z`
L
)T @ 1N.(4.4)

for i = 1, . . . , N, and ` = 1, . . . , L.

4.3. Tensors and endomorphisms. Recall that there is an isomorphism RN×n ' RN ⊗
Rn. Explicitly, a matrix M ∈ RN×n can be identified with ∑N

i=1 ei ⊗ M[i]T ∈ RN ⊗Rn

where M[i] is the i-th row of M, and ei is the i-th basis element of RN. Also recall that
RN×N can be identified with the algebra of linear endomorphisms of the vector space
RN, that is, RN×N ' End(RN). Futhermore, we have an isomorphism:

End(RN)⊗ End(Rn) ' End(RN ⊗Rn)

2If desired, one can define the partial feedforward functions F̃θ,` : RN×n0 → RN×n` . These will be
similar to the single sample case, but with transposes where appropriate.

8 IORDAN GANEV

Returning to backpropogation, for ` = 1, . . . , L, set:

Φ` := ∑
i

Eii ⊗ JacT
i,` ∈ RN×N ⊗Rn`×n` ' End(RN ⊗Rn`)

where Eii ∈ RN×N is the elementary matrix with 1 in the diagonal (i, i) entry and zeros
elsewhere. Identifying Φ` as an endomorphism of RN ⊗Rn` , equations 4.1 and 4.2 can
be written as:

∇ZLL = ΦL
(
∇ŶC(−, Y)

)
∇Z`−1L = Φ`−1

(
∇Z`
L @ W`

)
noting that ∇ŶC(−, Y) ∈ RN×nL and ∇Z`

L @ W` ∈ RN×n`−1 . Justifying this reformula-
tion uses the facts that (1) Eii(ei) = ei for any i = 1, . . . , N, and (2) JT@ vT = (v @ J)T for
any matrix J ∈ Rn×n and row vector v ∈ R1×n.

4.4. Algorithm. We use Proposition 4.1 to implement an algorithm for computing the
gradients of the parameters using backpropogation in batches (Algorithm 2). The justi-
fication of this algorithm proceeds along similar lines to that of Corollary 3.3.

Algorithm 2: Computing Gradients Using Back Propagation with Batches

inputs: batch X ∈ RN×n0 , Y ∈ RN×nL ,
weights W = (W` ∈ Rn`×n`−1)

L
`=1 ,

activations (σ` : Rn` → Rn`)L
`=1

Z0 ← X
for `← 1 to L do // Forward propagation

Z` ← σ`−1 (Z`−1) @ WT
` + 1N @ bT

` // Apply activation to rows
end

G = Gradient (C(−, y), σ (zL)) // Set-up for Back prop.

for i← 1 to N do
Jaci,` ← Jacobian (σL, Z`[i]) // Jacobian matrix
grad_ZL[i]← G[i] @ Jaci,L // gradient w.r.t. ZL

end

for `← L to 1 do // Back propagation

for i← 1 to N do
grad_Z`−1[i]← grad_Z`[i] @ W` @ Jaci,`−1 // gradient w.r.t. Z`−1

end

grad_W` ← grad_ZT
` @ σ (Z`−1) // gradient w.r.t. W`

grad_b` ← grad_ZT
` @ 1N // gradient w.r.t. b`

end

return: gradients (grad_W` , grad_b`)
L
`=1

NOTES ON BACKPROPOGATION 9

5. Exercises

(1) Compute the Jacobian matrix (when it exists) for the following activation func-
tions σ : Rn → Rn. Indicate where the function is not differentiable.
(a) Pointwise sigmoid z 7→ 1

1+e−z .
(b) Pointwise ReLU z 7→ max(0, z).
(c) Pointwise arctan z 7→ arctan(z).
(d) Softmax z = (z1, . . . , zn) 7→

(
exp(z1)

∑j exp(zj)
, . . . , exp(zn)

∑j exp(zj)

)
.

(e) Radial Sigmoid z 7→ 1
1+e−|z|

· z
|z| .

(2) Compute the Jacobian matrix (when it exists) and its transpose for the following
‘pooling’ functions3 σ : Rn → R. Indicate where the function is not differentiable.
(a) Max pooling z = (z1, . . . , zn) 7→ max(zi).
(b) Average pooling z = (z1, . . . , zn) 7→ 1

n ∑i zi.

(3) Consider φ : Rn×m → Rn defined by M 7→ M @ a + b for fixed a ∈ Rm and
b ∈ Rn. Prove that the transpose of the differential at any M ∈ Rn×m is given by:
dφT

M(v) = v @ aT for any v ∈ Rn. (Note the lack of dependency on M.)

(4) Verify that the run time of Algorithm 1 is O(Ln2
max), where nmax = max0≤`≤L(n`).

Similarly, verify that the run time of Algorithm 2 is O(NLn2
max).

(5) Recover Algorithm 1 from Algorithm 2 by setting N = 1 and taking transposes
where appropriate.

(6) Verify that Algorithms 2, 3, 4, and 5 accurately compute the gradients ∇W`
L and

∇b`L. Interpret each of grad_a` and grad_A` as gradients of partial loss functions
Rn` → R and RN×n` → R, with respect to the post-activation feature vectors a`
and A`, respectively.

3Hint: The Jacobian of max pooling is a column vector with a single one at the index of the maximum
entry, while the Jacobian of average pooling is the column vector with 1/n in every coordinate.

10 IORDAN GANEV

Appendix A. Variations of the algorithm

In this appendix, we provide alternative implementations of the backpropogation al-
gorithm. Algorithm 3 uses only the post-activation feature vectors, while Algorithm 4

uses both the pre- and post-activation feature vectors. Algorithm 5 uses both pre- and
post-activation feature vectors in a batch setting.

Algorithm 3: Computing Gradients Using Back Propagation (alternative version)
inputs: sample point (x, y) ∈ Rn0 ×RnL ,

weights W = (W` ∈ Rn`×n`−1)
L
`=1 ,

activations (σ` : Rn` → Rn`)L
`=1

a0 ← x
for `← 1 to L do // Forward propagation

a` ← σ` (W` @ a`−1 + b`) // feature vector
Jac` ← Jacobian (σL, W` @ a`−1 + b`) // Jacobian matrix

end
grad_aL = Gradient (C(−, y), aL)
for `← L to 1 do // Back propagation

grad_W` ← JacT
` @ grad_a` @ aT

`−1 // gradient w.r.t. W`

grad_b` ← JacT
` @ grad_a` // gradient w.r.t. b`

grad_a`−1 ← (W`−1)
T @ JacT

` @ grad_a` // gradient w.r.t. a`
end
return: gradients (grad_W` , grad_b`)

L
`=1

NOTES ON BACKPROPOGATION 11

Algorithm 4: Computing Gradients Using Back Propagation (combined version)
inputs: sample point (x, y) ∈ Rn0 ×RnL ,

weights W = (W` ∈ Rn`×n`−1)
L
`=1 ,

activations (σ` : Rn` → Rn`)L
`=1

a0 ← x
for `← 1 to L do // Forward propagation

z` ←W` @ a`−1 + b`
a` ← σ` (z`)
Jac` ← Jacobian (σL, z`) // Jacobian matrix

end
grad_aL = Gradient (C(−, y), aL)
for `← L to 1 do // Back propagation

grad_z` ← JacT
` @ grad_a` // gradient w.r.t. z`

grad_a`−1 ← (W`−1)
T @ grad_z` // gradient w.r.t. a`

grad_W` ← grad_z` @ aT
`−1 // gradient w.r.t. W`

grad_b` ← grad_z` // gradient w.r.t. b`
end
return: gradients (grad_W` , grad_b`)

L
`=1

12 IORDAN GANEV

Algorithm 5: Computing Gradients Using Back Propagation with Batches (com-
bined version)
inputs: batch X ∈ RN×n0 , Y ∈ RN×nL ,

weights W = (W` ∈ Rn`×n`−1)
L
`=1 ,

activations (σ` : Rn` → Rn`)L
`=1

A0 ← X
for `← 1 to L do // Forward propagation

Z` ← A`−1 @ WT
` + 1N @ bT

` // Apply activation to rows
A` ← σ` (Z`)
for i← 1 to N do

Jaci,` ← Jacobian (σL, Z`[i]) // Jacobian matrix
end

end

grad_AL = Gradient (C(−, y), AL)
for `← L to 1 do // Back propagation

for i← 1 to N do
grad_Z`[i]← grad_A`[i] @ Jaci,` // gradient w.r.t. Z`

end
grad_A`−1 ← grad_Z` @ W`−1 // gradient w.r.t. A`
grad_W` ← grad_ZT

` @ A`−1 // gradient w.r.t. W`

grad_b` ← grad_ZT
` @ 1N // gradient w.r.t. b`

end
return: gradients (grad_W` , grad_b`)

L
`=1

	1. Introduction
	2. Neural networks
	3. Main result
	4. Batches
	5. Exercises
	Appendix A. Variations of the algorithm

