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1. Introduction

There are informal notes on stochastic calculus with the aim of understanding the Black–
Scholes–Merton differential equation. The main references are [Shr04,Rom12]. We claim
no originality. Some basic background in mathematics is assumed, and we start with a
brief summary of the necessary concepts from probability theory.

2. Probability basics

2.1. Probability spaces. Let Ω be a non-empty set. A σ-algebra on Ω is a collection of
subsets F that contains ∅ and is closed under complements and countable unions. The
pair (Ω,F ) is known as a measurable space. For example, the Borel σ-algebra B on R is
defined as the smallest σ-algebra containing the closed intervals [a, b]. We can similarly
define the Borel σ-algebra B([0, 1]) of the unit interval, or of any interval in R.

A measure on (Ω,F ) is a function µ : F → R≥0 that is additive on countable collections
of disjoint subsets belonging to F . A measure µ is said to be a probability measure if
µ(Ω) = 1. We may write µ = P for a probability measure. Let M(Ω,F ) (resp. PM(Ω,F ))
be the set of all measures (resp. probability measures) on (Ω,F ). A probability space is a
triple (Ω,F , P) where P is a probability measure on (Ω,F ).

1
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2.2. Random variables. A random variable on a measurable space (Ω,F ) is a function
X : Ω→ R such that the inverse image of any Borel subset of R belongs to F , that is:

X−1(B) ∈ F for all B ∈ B.

The set of all random variables on (Ω,F ) forms a vector space (see Exercise 6.1), which
we denote RV(Ω,F ) and may abbreviate to RV when (Ω,F ) is clear from context. Any
random variable defines a pullback map:

PM(Ω,F )→ PM(R,B)

P 7→ µ
(P)
X =

[
B 7→ P(X−1(B))

]
for any B ∈ B.

The probability measure µ
(P)
X on R is called the probability distribution of X with respect

to P. Note that different random variables (potentially defined on different probability
spaces) may have the same distribution, while the same random variable may have a
different distribution under a change of the probability measure.

We say that X has a density if there is a non-negative function f : R→ R such that1

µ
(P)
X ([a, b]) =

∫ b

a
f (t)dt for all a ≤ b.

A random variable X on a probability space (Ω,F , P) is said to be a normal random vari-
able with mean µ and variance σ2 if its distribution is the standard normal distribution;
in other words, if

µ
(P)
X ([a, b]) =

1
σ
√

2π

∫ b

a
e−

(t−µ)2

2σ2 dt.

The inverse images of Borel subsets under a random variable X form a σ-subalgebra of
F , denoted σ(X) = {X−1(B) | B ∈ B}. We say that two random variables X and Y on a
probability space (Ω,F , P) are independent if, for any A ∈ σ(X) and B ∈ σ(Y), we have:

P(A ∩ B) = P(A) ·P(B)

2.3. Lebesgue integral. Let X be a random variable on (Ω,F ) and let µ be a measure
on this space. Assume for the moment that X(ω) ≥ 0 for any ω ∈ Ω. Let Π =
{y0, y1, y2, . . . } where 0 = y0 < y1 < y2 < · · · . The lower Lebesgue sum of X with respect
to Π is defined as:

LS−Π(X) =
∞

∑
k=0

ykµ(X−1[yk, yk+1)).

In other words, we take a sum of the yk, each weighted by the measure of points that
X sends to the interval [yk, yk+1)

2. Taking the limit over finer and finer partitions Π, we

1This is a slightly simplified version. The function f must be Borel measurable function, i.e., f−1(B) ∈ B
for every B ∈ B, and the condition is that µ

(P)
X (B) is the Lebesgue integral

∫
B f (t)dt for every B ∈ B.

2Hence, we are partitioning the output space (y-axis) as opposed to the partition of the input space
(x-axis) that occurs when defining the Riemann integral.
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obtain the Lebesgue integral of X, which may be infinity:

Lebesgue integral:
∫

Ω
Xdµ := lim

|Π|→0
LS−Π(X)

where |Π| indicates the maximum distance between successive points in a partition. This
procedure can be easily extended in the case where X is not necessarily positive; in this
case the Lebesgue integral may not exist. One can also readily make sense of the integral
over any subset A ∈ F by considering µ(A ∩ X−1[yk, yk+1)).

Let (Ω,F , P) be probability space. The expectation of a random variable X on this space
is defined as the Lebesgue integral E(X) =

∫
Ω XdP. Suppose X has a density fX,

and suppose g : R → R be a Borel-measurable function3, then the expectation can be
computed as an ordinary Riemann integral:

E(g(X)) =
∫ ∞

−∞
g(t) fX(t)dt

provided that the quantity
∫ ∞
−∞ |g(t)| fX(t)dt is finite.

3. Stochastic calculus

Stochastic calculus is an adaptation of ordinary calculus to the study of stochastic pro-
cesses that may be nowhere differentiable. A stochastic process is, roughly speaking, a
continuous path in the space of random variables. More precisely, it is a map ∆ : R≥0 →
RV(Ω,F ) such that ∆(ω) : t 7→ ∆(t)(ω) is continuous as a map R→ R, for every ω ∈ Ω.
A fundamental stochastic process is Brownian motion, which we now define.

3.1. Brownian motion. Let (Ω,F , P) be a probability space. A stochastic process W :
R≥0 → RV is said to be a Brownian motion if W(0) is the constant random variable
at zero, and, for any 0 = t0 < t1 < t2 < · · · < tn, the increment random variables
W(ti+1)−W(ti) are independent, and the i-th is normally distributed with mean 0 and
variance ti+1 − ti. Thus:

µW(ti+1)−W(ti)
∼ N(0, ti+1 − ti).

For the remainder of this section, we fix a Brownian motion4 W.

Proposition 3.1. With probability one, we have:

(3.1) lim
|Π|→0

n−1

∑
j=0

[
W(tj+1)−W(tj)

]p
=

{
T if p = 2
0 if p > 2

3That is, g−1(B) ∈ B for all B ∈ B
4We also implicitly fix a filtration F (t), for t ∈ R≥0, which is an increasing sequence of σ-algebras on Ω,

all contained in F , also satisfying (i) [W(t)]−1(B) ∈ F (t) for any Borel subset B of R, and (ii) W(t)−W(s)
is independent of F (s) for all t > s. See [Shr04, Chapters 2 and 3] for more details about filtrations.
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We leave the full verification of the above result as an exercise (Exercise 6.2). Briefly,
in the case p = 2, one can consider the standard normal random variable Zj+1 =
W(tj+1)−W(tj)√

tj+1−tj
, and apply the law of large numbers, noting that E(Z2

j+1) = 1.

3.2. The Itô integral. Let ∆ be a stochastic process defined on [0, T]. The Itô integral of
∆ is defined as:

I∆(T)(ω) = lim
|Π|→0

n−1

∑
j=0

∆(tj)(ω) ·
[
W(tj+1)−W(tj)

]
(ω),

where Π = {t0 = 1, t1, . . . , tn = T} be a partition of [0, T], with tj < tj+1 and norm
|Π| = maxj{tj+1 − tj}, so the limit is over finer and finer partitions5. It is common

to suppress ω, and to write the Itô integral as I(T) =
∫ T

0 ∆(u)dW(u). A particular
evaluation would require a choice of ω.

Theorem 3.2 (Itô–Doeblin formula). For any twice differentiable function f : R → R, we
have:

f (W(T)) = f (0) +
∫ T

0
f ′(W(u))dW(u) +

1
2

∫ T

0
f ′′(W(u))du

Sketch of the proof. We fix a partition of [0, T] and consider the Taylor expansion (truncat-
ing if necessary):

f (W(T))− f (W(0)) =
n−1

∑
j=0

[
f (W(tj+1))− f (W(tj))

]
=

n−1

∑
j=0

∞

∑
p=1

1
p!

f (p)(W(tj))
[
W(tj+1)−W(tj)

]p

Next, we take the limit as |Π| → 0. Proposition 3.1 implies that the Taylor expansion
terms with p > 2 limit to zero. For p = 1, by definition, we obtain the Itô integral∫ T

0 f ′(W(t))dW(t). For p = 2, Proposition (3.1) implies that we obtain the ordinary
(Lebesgue) integral 1

2

∫ T
0 f ′′(W(t))dt. The result follows, noting that W(0) = 0. �

The result ∑n−1
j=0

[
W(tj+1)−W(tj)

]2 |Π|→0−→ T implies that Brownian motion accumulates
quadratic variation at the rate of one per unit time. An informal way to summarize this
result is as dW(t)dW(t) = dt, and we may write the Itô formula in differential form:

d f (W(t)) = f ′(W(t))dW(t) +
1
2

f ′′(W(t))dt

5A slightly more rigorous definition involves defining the integral for a simple process first, and then
approximating any process with a sequence of simple processes.



NOTES ON STOCHASTIC CALCULUS AND THE BLACK–SCHOLES–MERTON EQUATION 5

3.3. Itô processes. An Itô process is one of the form:

(3.2) X(T) = X(0) +
∫ T

0
∆(t)dW(t) +

∫ T

0
Θ(t)dt

where X(0) is non-random and ∆(t) and Θ(t) are adapted processes to the fixed filtration
for Brownian motion W. (Again, we suppress the ω.) Hence, an Itô process consists of
a non-random initial value, an Itô integral, and an ordinary integral. Using similar
methods as above, one can verify the Itô–Doeblin formula for an Itô process:

f (T, X(T))− f (0, X(0)) =
∫ T

0

[
ft(t, X(t)) + fx(t, X(t))Θ(t) +

1
2

fxx(t, X(t))∆2(t)
]

dt

+
∫ T

0
fx(t, X(t))∆(t)dW(t)

We informally write dX(t) = ∆(t)dW(t) + Θ(t)dt and dX(t)dX(t) = ∆2(t)dt, and so an
Itô process X(t) satisfies the equation:

d f (t, X(t)) =
[

ft(t, X(t)) + fx(t, X(t))Θ(t) +
fxx(t, X(t)

2
∆2(t)

]
dt + fx(t, X(t))∆(t)dW(t)

A geometric Brownian motion is a process of the form

S(t) = S(0)eX(t)

where X(t) is an Itô process as in (3.2). The process S(t) satisfies the equation:

dS(t) = α(t)S(t)dt + σ(t)S(t)dW(t)

where α(t) = Θ(t) + 1
2 ∆2(t) is the instantaneous mean rate of return and σ(t) = ∆(t) is the

volatility.

4. Black-Scholes-Merton equation

Our standing assumptions are (1) the existence of a money market account paying a
constant interest rate of r, (2) there are no arbitrage opportunities, (3) there is sufficient
market liquidity and no transaction fees, and (4) the stock is infinitely divisible with con-
tinuous time evolution (no jumps). The derivation of the Black–Scholes–Merton equation
relies on argument using hedging, which is a general term for the practice of construct-
ing a portfolio with less overall random fluctuation than the individual instruments in
the portfolio. In this way, hedging provides insurance for investments at the cost of
purchasing the off-setting contracts and possible reduced future payoff.

4.1. Derivative pricing. A derivative of a stock is a contract that derives its value from
the performance of the stock. Examples of derivatives include call options, put options,
and forward contracts; we discuss these in more detail below. Suppose we are working
with a derivative whose payoff at time T depends only on the price S(T) of the stock at
time T. For example, a call option with strike K has payoff max(0, S(T)−K) at expiration
time T. In this case, it can be shown that the price of the derivative at any time t ∈ [0, T]
depends only on the time t and the price S(t) of the stock at that time. We write f (t, x)
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for the price of the derivative at time t ∈ [0, T] if the stock price is x = S(t). We write ft,
fx, fxx for the indicated partial derivatives of f .

Theorem 4.1 (Black–Scholes–Merton Equation). If S(t) is modeled by geometric Brownian
motion with constant mean rate of return and constant volatility σ, then function f satisfies:

r f (t, x) = rx fx(t, x) + ft(t, x) +
1
2

σ2x2 fxx(t, x).

Proof. Consider an agent who would like to hedge the derivative. The agent can do this
with a portfolio consisting of some amount of this stock, as well as some amount of cash
with interest rate r. If X(t) is the total value of the portfolio, then the agent seeks to have

X(t) = f (t, S(t))

This equation holds if and only if the differentials of each side are equal. We find
expressions for each of these differentials.

We first compute dX(t). Let ∆(t) be the number of units of stock that the agent owns at
time t, so that the agent’s cash position at time t is X(t)− ∆(t)S(t). The stock compo-
nent evolves as ∆(t)dS(t). Using the geometric Brownian motion assumption, we have
dS(t) = αS(t)dt + σS(t)dt, where α is the (constant) mean rate of return. Meanwhile, the
cash evolves as r(X(t)− ∆(t)S(t))dt. Hence:

dX(t) = ∆(t)dS(t) + r(X(t)− ∆(t)S(t))dt

= [rX(t) + ∆(t)(α− r)S(t)] dt + σ∆(t)S(t)dW(t).

Next, using the Itô–Doeblin formula, the evolution of f (t, x) is given by:

d f (t, S(t)) =[
ft(t, S(t)) + αS(t) fx(t, S(t)) +

1
2

σ2S2(t) fxx(t, S(t))
]

dt + σS(t) fx(t, S(t))dW(t)

Finally, setting the differentials equal to each other, i.e. dX(t) = d f (t, S(t)), we first
equate the dt terms to obtain:

∆(t) = fx(t, S(t))

This is known as the delta-hedging rule. Equating the dW(t) terms, we obtain:

rX(t) + ∆(t)(α− r)S(t) = ft(t, S(t)) + αS(t) fx(t, S(t)) +
1
2

σ2S2(t) fxx(t, S(t))

Substituting ∆(t) = fx(t, S(t) and X(t) = f (t, S(t)), rearranging terms, and writing x
instead of S(t), we arrive at the Black–Scholes–Merton differential equation. �

Remark 4.2. The easiest example of a derivative is a single unit of stock, so that f (t, x) =
x. Alternatively, one can invest K in the money market account, giving f (t, x) = ertK,
and this also counts as a derivative even though there is no dependency on x = S(t).
Both these functions satisfy the Black–Scholes–Mertion equation with initial conditions
f (0, x) = x and f (0, x) = K, respectively.
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4.2. Forward contracts. A forward contract is an agreement obligating its holder to buy
one share of the stock at the time of expiry T for the delivery price K. Hence, it is an
example of a derivative. Let f (t, x) be the value of the forward contract at time t ∈ [0, T]
if the stock price at time t is x = S(t). Hence, at expiration, we have f (T, x) = S(T)− K.
Furthermore:

Lemma 4.3. The value of a forward contract with expiration time T and delivery price K is:

f (t, x) = x− e−r(T−t)K for t ∈ [0, T]

Proof. An agent can perform a static hedge by selling the forward contract at S(0) −
e−rTK and purchasing one unit of the stock. This requires a loan of e−rTK from the
money market account. At time t, the value of the agent’s portfolio is S(t)− e−r(T−t)K;
in particular, at expiration the value matches that of the forward contract. Hence it
is a replicating portfolio for the forward contract, and the result follows from the no-
arbitrage assumption. �

Remark 4.4. Lemma 4.3 does not require that the stock follows geometric Brownian
motion. Hence it applies more broadly to situations where there is sufficient liquidity
and constant interest rate. At the same time, the function for the forward value is still a
solution to the Black–Scholes–Merton equation with terminal condition f (T, x) = x− K.

Remark 4.5. The forward price is the value of K which makes the forward contract have
value zero at time t, i.e., ForS(t, T) = er(T−t)S(t).

4.3. Options. A call option (resp. put option) is a contract allowing the holder to purchase
(resp. sell) the stock at the time of expiry T for the strike price of K. The holder of the
option is not obligated to buy or sell at the time of expiry. We see that options are
derivatives whose price at expiration are given by max(0, S(T)− K) in the case of calls
and max(0, K − S(T)) in the case of puts. Let c(t, x) and p(t, x) be the price of a call
option (resp. put option) at time t if the stock price is x = S(t).

Proposition 4.6 (Put-Call Parity). For any t ∈ [0, T], we have:

c(t, x)− p(t, x) = x− e−r(T−t)K

Proof. A portfolio consisting of a purchased call and a sold put is equivalent to a forward
contract. In particular, both portfolios have value at expiration equal to max(0, S(T)−
K)−max(0, K−S(T)) = S(T)−K. The no-arbitrage assumption implies that their prices
will be the same for any t ∈ [0, T], and we apply Lemma 4.3. �

Since options are derivatives of the stock, the Black–Scholes–Merton equation applies:

Proposition 4.7. If S(t) is modeled by geometric Brownian motion with constant mean rate
of return and constant volatility, then the call and put option prices satisfy the Black–Scholes–
Merton equation with terminal conditions:

c(T, x) = max(0, x− K) p(T, x) = max(0, K− x)



8 IORDAN GANEV

5. Black–Scholes–Merton formula

We explain a method of finding a solution to the Black–Scholes–Merton differential equa-
tion. A key step in this method involves changing the original ‘real-world’ probability
measure to a ‘risk-neutral’ probability measure. The terminology is somewhat unfortu-
nate since since both measures apply to the same sample space Ω, which, in financial
applications, represents all possible future states of the markets. Both measures agree
on what is impossible; specifically, a subset of Ω has probability 1 under one measure
if and only if it has probability 1 under the other measure. This is enough to construct
hedges, since a hedge that works almost surely under one measure also works almost
zsurely under the other measure.

5.1. Change of measure. Fix (Ω,F ). One can use random variables to change probabil-
ity measures via Lebesgue integration. To be precise, consider all pairs (Z, P) consisting
of a random variable and a probability measure such that the expectation of Z under P

is equal to 1, that is:
∫

Ω ZdP = 1. Denoting this set of pairs as (RV× PM)unit, we have a
map:

(RV(Ω,F )× PM(Ω,F ))unit −→ PM(Ω,F ), (X, P) 7→ P(Z) = [A 7→
∫

A
ZdP]

Next we consider changing the measure to turn a Brownian motion with drift into a
Brownian motion with no drift.

Proposition 5.1 (Simple version of Girsanov Theorem). Let W(t) be Brownian motion on
(Ω,F , P), defined for t ∈ [0, T]. Fix a constant θ, and consider the random variables:

Z = exp
(
−θW(T)− 1

2
θ2T

)
and W̃(t) = θt + W(t)

Then E(Z) = 1 and W̃(t) is a Brownian motion on [0, T] under the probability measure P(Z).

Sketch of proof. To show that E(Z) = 1 , let Z(t) = exp
(
−θW(t)− 1

2 θ2t
)

. A bit of Itô
calculus shows that Z(t) is a martingale, so that the expectation of the difference Z(t)−
Z(s) is zero for all 0 ≤ s < t ≤ T. Hence the expectation of Z = Z(T) is equal to the
expectation of Z(0), which is 1.

Next, one must show that, for the probability measure P(Z) and any 0 = t0 < t1 < t2 <
· · · < tn, the increment random variables W̃(ti+1)− W̃(ti) are independent, and the i-th
is normally distributed with mean 0 and variance ti+1− ti. It is straightforward to verify
the assertions of independence, normal distribution, and variance. The claim of mean 0
is equivalent to showing that:

E(W̃(t)Z) = 0
To see this, first write W̃(t)Z = W̃(t)Z(t) Z

Z(t) and observe that W̃(t)Z(t) depends on ω ∈

Ω only through W(t). On the other hand, Z
Z(t) = exp

(
−θ (W(T)−W(t))− 1

2 θ2(T − t)
)

depends on ω ∈ Ω only through W(T) −W(t). It follows that W̃(t)Z(t) and Z
Z(t) are
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independent random variables, so the expectation of their product is the product of their
expectations. Finally, an application of Exercise 6.5 implies that E(W̃(t)Z(t)) = 0. (One
can additionally use the martingale property of Z(t) to that that the expectation of the
quotient Z/Z(t) is equal to 1.) �

Now consider geometric Brownian motion used to model a stock with instantaneous
rate of return α and volatility σ, both of which are constant functions of t:

S(t) = S(0) exp
(

σW(t) +
(

α− 1
2

σ2
)

t
)

Set θ = α−r
σ and let W̃(t) = θt + W(t), so that

S(t) = S(0) exp
(

σW̃(t) +
(

r− 1
2

σ2
)

t
)

Applying Proposition 5.1, we see that there is a random variable Z such that W̃ is a
Brownian motion under the probability measure P(Z), and the random variable Y(T) =
ln
(

S(T)
S(0)

)
is normally distributed with mean

(
r− σ2

2

)
T and variance σ2T. The probabil-

ity measure P(Z) is called the risk-neutral measure, since both the stock and the money
market account have the same rate of return r.

5.2. The formula. Suppose we have a call option with strike price K expiring at time
T. Let t be the current time, with 0 ≤ t ≤ T, and let x = S(t) be the current price of
the underlying asset. The time until expiration is given by τ = T − t. Set d±(τ, x) =

1
σ
√

τ

(
ln
( x

K
)
+
(

rτ ± σ2

2

))
.

Theorem 5.2. With the above notation, and under the standing assumptions, solutions to the
Black–Scholes–Merton equation for calls and puts is given by:

c(t, x) = xFstd (d+(τ, x))− Ke−rτFstd (d−(τ, x))

p(t, x) = Ke−rτFstd (−d−(τ, x))− xFstd (−d+(τ, x))

where Fstd is the cumulative density function of a standard normal random variable.

Proof. The geometric Brownian motion assumption implies that, under the risk-neutral
probability measure, the price S = S(T) of the underlying at expiration is a log-normal
random variable with mean

(
r− σ2

2

)
τ and variance σ2τ, i.e., Y = ln

(
S
x

)
∼ N

(
rτ − σ2τ

2 , σ2τ
)

.
The current value of the option is given by:

E
(
e−rτ max(0, S− K)

)
= e−rτ

∫ ∞

K
(s− K) fS(s)ds

= e−rτ
∫ ∞

K
s fS(s)ds + Ke−rτ

∫ ∞

K
fS(s)ds
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where fS is the probability density function of S. We first analyze the integral appearing
in the second term:∫ ∞

K
fS(s)ds = P(S ≥ K) = P

(
Y ≥ ln

(
K
x

))
= P

(
Z ≥

ln
(K

x
)
− rτ + σ2τ

2
σ
√

τ

)

= Fstd

(
−

ln
(K

x
)
− rτ + σ2τ

2
σ
√

τ

)
= Fstd

(
ln
( x

K
)
+ rτ − σ2τ

2
σ
√

τ

)
= Fstd (d−(τ, x))

where Z is a standard normal random variable with cumulative density function Fstd,
and we use the fact that P(Z ≥ d) = Fstd(−d). Next we analyze the integral appearing
in the first term:

∫ ∞

K
s fS(s)ds =

∫ ∞

K

s
s
√

2στ
exp

−
(

ln
( s

x
)
−
(

rτ − σ2τ
2

))2

2σ2τ

 ds

=
∫ ∞

ln( K
x )

1√
2στ

exp

−
(

y−
(

rτ − σ2τ
2

))2

2σ2τ

 xeydy

=
xerτ

√
2στ

∫ ∞

ln( K
x )

exp

−
(

y−
(

rτ + σ2τ
2

))2

2σ2τ

 dy

= xerτP

(
Z ≥

ln
(K

x
)
− rτ − σ2τ

2
σ
√

τ

)
= xerτFstd

(
−

ln
(K

x
)
− rτ − σ2τ

2
σ
√

τ

)

= xerτFstd

(
ln
( x

K
)
+ rτ + σ2τ

2
σ
√

τ

)
= xerτFstd (d+(τ, x))

where the first equality uses the probability density function of a log-normal random
variable; the second makes the substitution y = ln

( s
x
)
; the third results from completing

the square (see Exercise 6.4); and the last steps are elementary manipulations with the
standard normal random variable Z and its cumulative density function. Combining the
above calculations of the two integrals, we obtain the desired result for call options. The
result for put options follows from the put-call parity formula (Proposition 4.6). �

Remark 5.3. Under a change of variables, the Black–Scholes–Merton equation becomes
the one-dimensional heat equation. Namely, first let y = ln(x), which makes the equa-
tion have constant coefficients. Then set τ = T − t (the time remaining until expira-
tion) and g(τ, x) = erτ f (τ, x), which gets rid of the zero-th order term. Finally, set
z = y +

(
r− 1

2

)
τ, thus eliminating the first-order term and arriving at:

gτ =
1
2

σ2gzz

The solutions presented in Theorem 5.2 match those obtained via standard methods for
solving the heat equation.
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5.3. The Greeks. The “Greeks” refers to the derivatives of the call and put option for-
mulas with respect to various variables. For example, we have:

• Delta:
cx(τ, x) = N(d+(τ, x))

• Gamma:

cxx(τ, x) =
N′(d+(τ, x))

xσ
√

τ

• Theta:

ct(τ, x) = −rKe−rτ N(d−(τ, x))− σxN′(d+(τ, x))
2
√

τ

• Vega:
∂c(t, x | σ)

∂σ
= SN′(d+(τ, x))

√
τ

One sees that delta and gamma are always positive for a long call. This means that the
price of a call increases as the price of the underlying rises, and that the pricing function
of the call is convex. Additionally, theta is always negative, that is, the price of an option
decreases with time. Equivalently, the price of a call option falls as the time to expiration
decreases. Finally, vega is positive, so higher volatility implies higher prices.

6. Exercises

6.1. Space of random variables. Show that the space of random variables on (Ω,F )
forms a vector space. Hint: consider the countable union:

(X + Y)−1 ([0, ∞)) =
⋃

r∈Q

(
X−1([r, ∞]) ∩Y−1([−r, ∞))

)

6.2. Partitions and limits. Let Π be a partition as above. For p ≥ 2, we have the follow-
ing convergences as |Π| → 0:

• ∑n−1
j=0

(
tj+1 − tj

)p → 0

• E
[
∑n−1

j=0

(
W(tj+1)−W(tj)

)p
]
→ T if p = 2, otherwise→ 0.

• Var
[
∑n−1

j=0

(
W(tj+1)−W(tj)

)p
]
→ 0.

• ∑n−1
j=0

(
W(tj+1)−W(tj)

)p → T if p = 2, otherwise→ 0.

Hint: for the first identity, factor out |Π|p−1. For the second and third identities, note
that W(tj+1)−W(tj) is normal random variable with mean 0 and variance tj+1 − tj, so
one can easily compute (or look up) the higher moments. The final identity follows from
the previous two.
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6.3. Different types of integrals. Let g be a continuous function on the interval [0, T].
Show that:

lim
|Π|→0

n−1

∑
j=0

g(W(tj))
[
W(tj+1)−W(tj)

]p
=


∫ T

0 g(W(t))dW(t) if p = 1∫ T
0 g(W(t))dt if p = 2

0 if p ≥ 3

Note that the p = 1 case is by definition.

6.4. Completing the square. Show that exp
(
(x+a)2

c

)
e2bx = exp

(
(x+a+bc)2

c

)
e−b(2a+bc).

Apply this identity with a = −rτ + σ2τ
2 , b = 1

2 , and c = −2σ2τ.

6.5. Change of measure. Let X be a standard normal random variable on some prob-
ability space (Ω,F , P). Let θ ∈ R be a constant and define Y = X + θ. Under P, the
random variable Y normal with mean θ and variance 1. Set

Z = exp
(
−θX− 1

2
θ2
)

Show that E(Z) = 1 and that Y is standard normal under PZ.
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Appendix A. From densities to random variables

Above, we described how one arrives at a probability measure on R from a random
variable on some measurable space (Ω,F , P). This probability measure often has a
density. In this appendix, we describe the opposite procedure:

Task: given a density function f : R → [0, 1], produce a random variable whose proba-
bility distribution admitting f as its density function f .

Step 1. Let F(x) =
∫ x
−∞ f (t)dt be the cumulative density function. Note that F is non-

dereasing with derivative f .

Step 2. We claim that F is injective on the support of f . Indeed, we argue the contra-
positive. Let a ∈ R and suppose there exists b ∈ R such that a 6= b and F(a) = F(b).
We show that f (a) = 0. Without loss of generality, assume a < b. Then, since F is non-
decreasing, we have that F(a) = F(c) for all c ∈ [a, b]. It follows that f (c) = F′(c) = 0
for all c ∈ [a, b]. In particular, f (a) = 0.

Step 3. Let G : F(supp( f )) → R be the inverse of F on F(supp( f )). So G(F(x)) = x for
x ∈ R such that f (x) 6= 0, and F(G(z)) = z for z ∈ F(supp( f )) ⊆ [0, 1].

Step 4. Note that f−1(0) is a union of closed intervals and F is constant on each con-
nected component of f−1(0). We see that F( f−1(0)) has measure zero under the usual
measure on [0, 1].

Step 5. Let (Ω,F , P) be a probability space, and let Y : Ω → R be a random variable
such that the distribution function of Y is the uniform distribution on [0, 1] (see [Shr04,
Examples 1.2.4 and 1.2.5]). Observe that F( f−1(0)) has measure zero in [0, 1] under
the uniform measure. It follows that Y−1(F( f−1(0))) has measure zero in Ω. Now let
Ω◦ = Ω \ Y−1(F( f−1(0))), and let F ◦ = {A ∩Ω◦ ∈ F | A ∈ F}. Then the restriction
of P to F ◦ is a probability measure. Define a new random variable X : Ω◦ → R by
X(ω) = G(Y(ω)). Then one can show that the distribution of X has density function f
(see [Shr04, Example 1.2.6]).
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